
Generative 모델을 활용한

멀웨어 탐지 블랙박스 모델의

취약성 분석

백윤흥
SNU Security Research Group
서울대학교전기.정보공학부

Topics

• PDF malware
• PDF classifiers
• White/black-box attack models for classifiers
• Automatic generation of evasive PDF malware
• Our approach using a generative model

SNU Security Research Group

http://sor.snu.ac.kr

SW

HW

AI

Robust AI

Malware Analysis

Anomaly Detection Fuzzing

Trusted Computing

Hardware TEE

Side channel Attack/Defense

Hardware Integrity Monitor

Security Analysis

Compiler Techniques

Principal Investigators: 2
Graduate Students: 26

* https://www.sonicwall.com/resources/2020-cyber-threat-report-pdf

PDF malware
• PDF document can be malicious !
• # of detected PDF-based attacks is drastically increasing*

• In 2018, >47K new PDF attack variants were discovered
• In 2019, >73K PDF-based attacks were reported in one month, and

PDF malware accounts for 17% of newly detected threats

• PDF malware is popular as PDF documents can be viewed
on any device and are easy to create

0

50

100

150

200

250

2006

2007

2008

2009

2010

2011

2012

2013

2014

2015

2016

U http://www.cvedetails.com/vulnerability-list.php?vendor_id=53&product_id=921

U

Vu
ln

er
ab

ili
tie

s (
CV

Es
)

Injected Javascript code example

PDF malware example
• PDF consists of multiple

objects which are
hierarchically
connected with each
other.
• Adversaries can inject

their own JavaScript
code into the PDF
document structure
• JavaScript code exploits

specific PDF reader’s
vulnerability to perform
malicious actions

Adobe PDF Reader-based exploit

https://gbhackers.com/zero-day-exploit/

PDF

• First, adversaries encode malicious JavaScript

JavaScript encoding

• Then, they inject encoded malicious JavaScript code into
PDF structure

PDF

JavaScript injection

Victim

Internet

Adversary

PDF malware circulation
• Adversaries spread their malicious PDF documents

Victim

Internet

Adversary

PDF malware download
• Victim downloads the malicious PDF document

PDF

Malware infection
• When victim opens the malicious PDF document, the

system is infected.
• PDF reader application may become malicious

Once infected…
• Private information may be unintentionally leaked to

adversaries
• Infected PDF reader application …

• may send your documents in web storage everywhere
• Have access to your web storages to download from them.
• Have permission to send data over the network.

PDF reader
Web storage

Adversary

Network
PDF

Once infected…
• Control may be hijacked to open malicious payload

Content-based Classifier

Metadata of PDF files

PDFrate (ASASC ’12)

Structure-based Classifier

Logical structure of PDF files

Hidost (NDSS ’13, JIS ‘16)

PDF malware defense
• PDF malware classifiers

• Rule-based classifiers are easily bypassed

• ML technology has been applied to tackle the rapidly
increasing zero-day PDF malware

count_font
count_javascript
count_page
count_endobj
count_stream
count_obj
pos_box_max
pos_eof_avg
pos_ref_avg
producer_len
len_stream_min

Content-based classifier
• Based on features extracted from file document metadata
• A classifier, PDFrate, extracts 202 features manually selected

title_len
creator_len
producer_len
createdate_tz
ratio_imagepx_size
ref_min_id
count_font_obs
count_image_large
count_image_med
count_image_small
count_image_total
count_startxref

Object

+

Count
Size

Length
…

Feature

PDFrate example
• For example, count of font objects, page objects, JavaScript

objects…
• The count of font objects is 3, and the count of page

objects is 2
• No JavaScript object in this example

count_font
count_javascript
count_page
count_endobj
count_stream
count_obj
pos_box_max
pos_eof_avg
pos_ref_avg
producer_len
len_stream_min

PDF malwareBenign PDF

Font Page Java
Script

7 5 0

Font Page Java
Script

3 1 1

Malware defense with PDFrate
• The font objects identify the font program and contain

additional information about it
• A typical PDF malware has a smaller number of font

objects than a typical benign PDF because most of PDF
malwares do not have any contents .

Constructing a decision tree
• The data samples follow down the decision tree
• Choose feature boundary randomly

Page
> 15
Page
> 3

benign malicious benign malicious

Page
> 5

Font
> 7

Y N

Y YN N

Feedback

1, 1
22, 2 15, 1

2, 2

16, 9

11, 6

7, 8

4, 4

Left : the count of “Font” objects
Right : the count of “Page” objects

• After modifying decision boundary, all the test data is
correctly classified

Making decision with the tree

Page
> 3

benign malicious benign malicious

Page
> 5

Font
> 7

Y N

Y YN N

1, 1
22, 2 15, 1

2, 2

16, 9

11, 6

7, 8

4, 4

Font Page JavaScript
7 5 0

benign malware benign malware

Page
> 5

Page
> 3

Font
> 7

JavaScript
>= 1

Y N

Y

Y

YN N

N

Decision making with 3 features

benign malware benign malware

Page
> 5

Page
> 3

Font
> 7

Y

Y Y

N

N N

• Benign PDF

Font Page JavaScript
3 1 1

benign malware benign malware benign malware benign malware

Page
> 5

Page
> 3

Page
> 5

Page
> 3

Font
> 7

Font
> 7

JavaScript
>= 1

Y N

Y

Y Y Y

Y

Y

N

N N N N

N

Decision making with 3 features
• Malicious PDF

• Random Forest (RF) is used by PDFrate for classifying
benign/malicious PDFs
• RF, as its name ‘forest’ implies, consists of many random

individual decision trees independently trained
• Through voting process

among selected best trees
make a final decision

Building RF with decision trees

six 1s & three 0s è predict 1

Machine learning does help!

Training

Training Data

Inference? malwarePoisoning attackEvading attack
benign

• PDFrate detection accuracy è 0.997
• Unfortunately, the assumption that training data are

reprehensive is often abused by adversaries

• PDFrate depends only on feature values in the file
• Hence, vulnerable to a mimicry attack that crafts feature

values.

Evading PDFrate

PDF malware PDF malware with mimicry attack

Font Page Java
Script

3 1 1

Font Page Java
Script

8 4 1

• Decision tree of PDFrate for PDF malware evading with
mimicry attack

Font Page JavaScript
8 4 1

benign malware benign malware benign malware benign malware

Page
> 3

Page
> 5

Page
> 3

Page
> 5

Font
> 7

Font
> 4

JavaScript
>= 1

Y N

Y

Y Y Y

Y

Y

N

N N N N

N

PDFrate under attack

• A classifier, Hidost, discriminates between malicious and
benign files based on the logical structure
• Not relying on a collection of individual features and their

values, but on their relations in the PDF structures.
• Thus, relatively more robust against naïve mimicry attacks

that only manipulate feature values è accuracy: 0.999
• A total of 6,087 features are used

Structure-based classifier

PDF malware

/Root
/Type

/Root/Pages
/Type

/Root/Pages
/Count

/Root/Pages/…
/Type

/Root/Pages/…
/S . . .

Hidost – Feature
• Parse PDF into a structural representation
• The feature set consists of paths from “/Root” to leaf nodes

/Catalog

/Pages 2 /Font /JavaScript . . .

• Mimicry attack that inserts objects of benign PDF into PDF
malware without a sense of PDF structure
• Hidost will discard those objects in the feature set

??? ??? ??? ???

/Page /Font /Page /Font

/Root
/Type

/Root/Pages
/Type

/Root/Pages
/Count

/Root/Pages/…
/Type

/Root/Pages/…
/S . . .

/Catalog /Pages 2 /Font /JavaScript . . .

PDF malware with mimicry attack

/Page

/Page

Mimicry defense

/Root
/Type

/Root
/Pages
/Type

/Root
/Pages
/Count

/Root
/Pages

/…/Type

/Root
/Pages
/…/S

. . .

/Catalog /Pages 2 /Font /JavaScript . . .

PDF malware Discarded by Hidost!

/Root
/Type

/Root
/Pages
/Type

/Root
/Pages
/Count

/Root
/Pages

/…/Type

/Root
/Pages
/…/S

. . .

/Catalog /Pages 2 /Font /JavaScript . . .

Hidost classification

PDF malware with mimicry attack

Training with SVM
• Hidost used the support vector machine (SVM) as a large

set of features are used (a total of 6,087)
• SVM can deal with a large set of features
• SVM fits a hyperplane to data points in such a way that

separates two classes

<Support Vector Machine>

Beating malware classifiers
• A content-based classifier, PDFrate, has been subverted by

mimicry attack techniques manipulating feature values.
• A structure-based classifier, Hidost, is also vulnerable to a

mimicry attack crafted by additional human endeavor.
• An adversary may beat Hidost

by inserting objects from benign
PDF into PDF malware to look
structurally similar to benign PDF.

Malicious PDF with a
hand-crafted

mimicry attack

/Font /Font /Page /Page

/Root
/Type

/Root/Pages
/Type

/Root/Pages/
Count

/Root/Pages/…
/Type

/Root/Pages/…
/S

/Catalog /Pages 2 /Font /JavaScript

1 0 obj <<
/Type /Catalog
/Pages 2 0 R
…
>> endobj

2 0 obj <<
/Type /Pages
/Count 2
/Kids […]
…
>> endobj

/Type /Font …

/Type /Action
/S /JavaScript …

/Type /Font …

/Type /Page …

/Type /Font …

/Type /Font …

/Type /Page …
/Type /Font …

/Type /Font …
/Type /Font …

/Type /Font …

/Type /Page …
/Type /Page …

/Type
/Font/Type

/Page

/Type
/Page

/Type
/Font

/Type
/Font…

/Type
/Font…

/Type
/Page…

/Type
/Page…

/Root/Pages/
…/Type

/Root/Pages/
…/Type

/Root/Pages/
…/Type

/Root/Pages/
…/Type??? ??? ??? ???

…

Mimicry attack on Hidost

• First of all, too time consuming …
• The human usually need to understand the classifier

• Must know everything about the classifier’s detection process
• Training data (D), Feature Extractor (FE), Feature set (F), Model (M)

Manual malware generation

Feature Extractor

Feature set Model

Training Data

White-box Attacks

FE

F M

D

D FE F M
White

box √ √ √ √
Black
box X X X X

D FE F M
White

box √ √ √ √
FE

F M

D

result

Black-box attack
• White-box attacks are not realistic in practice.
• Attackers usually have the lowest level of knowledge

about classifier’s detection process
• They are only allowed to know the final classification

result (either benign or malicious) è Black-box attacks

• Develop an adaptive adversary that automatically generates
adversarial example (malware) against black-box classifiers
• Goals

• Test the robustness of existing classifiers against advanced attacks
• Try to construct more robust classifiers

• Adversarial examples must …
• Maintain the maliciousness of the original malicious file
• Evade the target classifier

Malware

Benign

Automating malware generation

Classifier
Evasive

Malware
Generator

• Automatically generating adversarial example to evade
PDF classifier

• The flow chart of EvadeML

Target
classifier

Attack
scenario

Strategy to
evade classifiers

Strategy to
maintain maliciousness

EvadeML PDFrate
Hidost

Black-box
attack

Genetic programming
(Random mutation) X

EvadeML

Target
Classifier

PDF
Parser

Genetic
Operator

Select
Variants

Fitness
Function

Oracle

https://evademl.org/

Genetic
Operator

Example of insertion operation

Genetic operators
• Generating variants by mutating the PDF malware
• Three operations for random mutation

• Deletion: Object is removed
• Insertion: Object is inserted (from benign file)
• Replacement: Object is replaced (from benign file)

• Classification threshold value is zero (0)
•  ≤  : benign
•  >  : malware

Target
Classifier

- 0.4 Benign

Hidost

Bypassing Hidost

Target
Classifier 0.1 Malware

Hidost

• Classification threshold value is 0.5
•  ≤ .  : benign
•  > .  : malware

Bypassing PDFrate

Target
Classifier

0.2 Benign

PDFrate

Target
Classifier 0.8 Malware

PDFrate

1 Maliciousness
O

• Verifying whether variant maintains the original malicious
behavior
• Cuckoo sandbox runs a submitted sample with several

virtual machines in parallel

Oracle 0 Maliciousness
X

Oracle: Cuckoo Sandbox

Oracle

Fitness
Function

Oracle

Target
Classifier

Hidost

1

Benign
(≤ ) x (-1)

Fitness score
• Fitness score of each generated variant
• High scores are better

• Fitness score of each generated variant
• High scores are better

Fitness
Function

Oracle

Target
Classifier

1

Benign
(≤ . )0.5 -

PDFrate

Fitness score

Select
Variants

Fitness
Function

Oracle

Target
Classifier

Genetic programming
• The process continues over multiple generations until the

adversarial example is created
• No learning-based intelligence in generating variants

Evasive
Success

Evasive
Fail

Genetic
Operator

Trials to evade classifiers

• All generated variants must go through the oracle
• Due to lack of intelligence, most variants are generated

randomly, losing the original maliciousness
• Hence, the speed to generated evasive malware is high

è > 120 hours are required

Limitations

0 50 100 150

PDFrate

Hidost

Hours

Our approach
• To overcome the limitations of EvadeML, we employ a

generative ML model that can automatically generate
adversarial examples.
• By learning the structures of both benign and malicious

PDFs, the model aims to simultaneously achieve two goals:
evading classifier and maintaining maliciousness.

Evading classifier Maintaining maliciousness

• The generator model must not modify the features that
are related to the malicious behavior
• Let S be the entire feature set, S’ be the features related to

the malicious behavior
• We have another ML model that guides the generator to

only modify the features in S-S’.

Learning to keep maliciousness

S

S’

Taxonomy of generative models

<Ian Goodfellow, 2016>

Inspired by GAN
• Generative Adversarial Network (GAN)
• Suitable in generating variants

Discriminator

Generator

Z
Random

noise

X’
Generated

X
Real

Real

Generated

Cost
Function

Our way to keep maliciousness
• Use the discriminator as a assistant tool to find S-S’

and only modify those features
• Hence, successfully maintain the original maliciousness

Generator

Discriminator

Malware

Generated

Cost
Function

refine S-S’

• 13 times faster than EvadeML (to evade Hidost)
• 30 times faster than EvadeML (to evade PDFrate)

Speed comparison with EvadeML

0 20 40 60 80 100 120 140 160

PDFrate

Hidost

Hours

EvadeML new methodour

• Attack against commercial anti-virus engines
• Achieved more than 60% evasion success rate in 27 engines

Evasion success rate

• EvadeML has been subverted
• Usenix Security ’19: Retraining ML PDF classifiers with S’
• Usenix Security ’20: Enhancing robustness of Hidost and PDFrate

• Extension to binary malware
• Binary has much more complex structures/semantics than PDF
• The challenge is difficult to retain code semantics which can easily

be broken if binary malware is randomly mutated
• Maliciousness will be lost if the code semantics is not retained
• IEEE Security & Privacy ’20 : generate Android malware by

selecting appropriate benign features that preserve
the original code semantics

Arms race is on-going…

If code semantics is broken,
malicious node is non-reachable

(Lost maliciousness)

