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* https://www.sonicwall.com/resources/2020-cyber-threat-report-pdf

PDF malware 
• PDF document can be malicious !
• # of detected PDF-based attacks is drastically increasing*

• In 2018, >47K new PDF attack variants were discovered
• In 2019, >73K PDF-based attacks were reported in one month, and 

PDF malware accounts for 17% of newly detected threats

• PDF malware is popular as PDF documents can be viewed 
on any device and are easy to create
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Injected Javascript code example

PDF malware example
• PDF consists of multiple 

objects which are 
hierarchically 
connected with each 
other.
• Adversaries can inject 

their own JavaScript
code into the PDF 
document structure
• JavaScript code exploits 

specific PDF reader’s 
vulnerability to perform 
malicious actions



Adobe PDF Reader-based exploit 

https://gbhackers.com/zero-day-exploit/

PDF



• First, adversaries encode malicious JavaScript

JavaScript encoding



• Then, they inject encoded malicious JavaScript code into 
PDF structure 

PDF

JavaScript injection



Victim

Internet

Adversary

PDF malware circulation
• Adversaries spread their malicious PDF documents



Victim

Internet

Adversary

PDF malware download
• Victim downloads the malicious PDF document



PDF

Malware infection
• When victim opens the malicious PDF document, the 

system is infected.
• PDF reader application may become malicious



Once infected…
• Private information may be unintentionally leaked to 

adversaries
• Infected PDF reader application …

• may send your documents in web storage everywhere
• Have access to your web storages to download from them.
• Have permission to send data over the network.

PDF reader
Web storage

Adversary

Network
PDF



Once infected…
• Control may be hijacked to open malicious payload 



Content-based Classifier

Metadata of PDF files

PDFrate (ASASC ’12)

Structure-based Classifier

Logical structure of PDF files 

Hidost (NDSS ’13, JIS ‘16)

PDF malware defense
• PDF malware classifiers

• Rule-based classifiers are easily bypassed

• ML technology has been applied to tackle the rapidly 
increasing zero-day PDF malware



count_font
count_javascript
count_page
count_endobj
count_stream
count_obj
pos_box_max
pos_eof_avg
pos_ref_avg
producer_len
len_stream_min

Content-based classifier
• Based on features extracted from file document metadata
• A classifier, PDFrate, extracts 202 features manually selected

title_len
creator_len
producer_len
createdate_tz
ratio_imagepx_size
ref_min_id
count_font_obs
count_image_large
count_image_med
count_image_small
count_image_total
count_startxref

Object

+

Count
Size

Length
…

Feature



PDFrate example
• For example, count of font objects, page objects, JavaScript 

objects…
• The count of font objects is 3, and the count of page 

objects is 2
• No JavaScript object in this example 

count_font
count_javascript
count_page
count_endobj
count_stream
count_obj
pos_box_max
pos_eof_avg
pos_ref_avg
producer_len
len_stream_min



PDF malwareBenign PDF

Font Page Java
Script

7 5 0

Font Page Java
Script

3 1 1

Malware defense with PDFrate
• The font objects identify the font program and contain 

additional information about it
• A typical PDF malware has a smaller number of font 

objects than a typical benign PDF because most of PDF 
malwares do not have any contents . 



Constructing a decision tree
• The data samples follow down the decision tree
• Choose feature boundary randomly
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Left : the count of “Font” objects 
Right : the count of “Page” objects



• After modifying decision boundary, all the test data is 
correctly classified 

Making decision with the tree
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Font Page JavaScript
7 5 0

benign malware benign malware
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Decision making with 3 features
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Font Page JavaScript
3 1 1

benign malware benign malware benign malware benign malware
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Decision making with 3 features
• Malicious PDF



• Random Forest (RF) is used by PDFrate for classifying 
benign/malicious PDFs
• RF, as its name ‘forest’ implies, consists of many random 

individual decision trees independently trained
• Through voting process 

among selected best trees
make a final decision

Building RF with decision trees

six 1s & three 0s è predict 1



Machine learning does help!

Training

Training Data

Inference? malwarePoisoning attackEvading attack
benign

• PDFrate detection accuracy è 0.997
• Unfortunately, the assumption that training data are 

reprehensive is often abused by adversaries



• PDFrate depends only on feature values in the file
• Hence, vulnerable to a mimicry attack that crafts feature 

values.

Evading PDFrate

PDF malware PDF malware with mimicry attack

Font Page Java
Script

3 1 1

Font Page Java
Script

8 4 1



• Decision tree of PDFrate for PDF malware evading with 
mimicry attack

Font Page JavaScript
8 4 1
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• A classifier, Hidost, discriminates between malicious and 
benign files based on the logical structure
• Not relying on a collection of individual features and their 

values, but on their relations in the PDF structures.
• Thus, relatively more robust against naïve mimicry attacks 

that only manipulate feature values è accuracy: 0.999
• A total of 6,087 features are used

Structure-based classifier



PDF malware

/Root
/Type

/Root/Pages
/Type

/Root/Pages
/Count

/Root/Pages/…
/Type

/Root/Pages/…
/S . . .

Hidost – Feature
• Parse PDF into a structural representation
• The feature set consists of paths from “/Root” to leaf nodes 

/Catalog

/Pages 2 /Font /JavaScript . . .



• Mimicry attack that inserts objects of benign PDF into PDF 
malware without a sense of PDF structure
• Hidost will discard those objects in the feature set

??? ??? ??? ???

/Page /Font /Page /Font

/Root
/Type

/Root/Pages
/Type

/Root/Pages
/Count

/Root/Pages/…
/Type

/Root/Pages/…
/S . . .

/Catalog /Pages 2 /Font /JavaScript . . .

PDF malware with mimicry attack

/Page

/Page

Mimicry defense



/Root
/Type

/Root
/Pages
/Type

/Root
/Pages
/Count

/Root
/Pages

/…/Type

/Root
/Pages
/…/S

. . .

/Catalog /Pages 2 /Font /JavaScript . . .

PDF malware Discarded by Hidost!

/Root
/Type

/Root
/Pages
/Type

/Root
/Pages
/Count

/Root
/Pages

/…/Type

/Root
/Pages
/…/S

. . .

/Catalog /Pages 2 /Font /JavaScript . . .

Hidost classification

PDF malware with mimicry attack



Training with SVM
• Hidost used the support vector machine (SVM) as a large 

set of features are used (a total of 6,087)
• SVM can deal with a large set of features 
• SVM fits a hyperplane to data points in such a way that 

separates two classes

<Support Vector Machine>



Beating malware classifiers
• A content-based classifier, PDFrate, has been subverted by 

mimicry attack techniques manipulating feature values.
• A structure-based classifier, Hidost, is also vulnerable to a 

mimicry attack crafted by additional human endeavor.
• An adversary may beat Hidost

by inserting objects from benign
PDF into PDF malware to look 
structurally similar to benign PDF.



Malicious PDF with a 
hand-crafted 

mimicry attack

/Font /Font /Page /Page

/Root
/Type

/Root/Pages
/Type

/Root/Pages/
Count

/Root/Pages/…
/Type

/Root/Pages/…
/S

/Catalog /Pages 2 /Font /JavaScript

1 0 obj <<
/Type /Catalog
/Pages 2 0 R 
…
>> endobj

2 0 obj <<
/Type /Pages
/Count 2
/Kids [ … ]
…
>> endobj

/Type /Font …

/Type /Action
/S /JavaScript …

/Type /Font …

/Type /Page …

/Type /Font …

/Type /Font …

/Type /Page …
/Type /Font …

/Type /Font …
/Type /Font …

/Type /Font …

/Type /Page …
/Type /Page …

/Type
/Font/Type

/Page

/Type
/Page

/Type
/Font

/Type
/Font…

/Type
/Font…

/Type
/Page…

/Type
/Page…

/Root/Pages/
…/Type

/Root/Pages/
…/Type

/Root/Pages/
…/Type

/Root/Pages/
…/Type??? ??? ??? ???

…

Mimicry attack on Hidost



• First of all, too time consuming …
• The human usually need to understand the classifier

• Must know everything about the classifier’s detection process 
• Training data (D), Feature Extractor (FE), Feature set (F), Model (M)

Manual malware generation

Feature Extractor

Feature set Model

Training Data

White-box Attacks

FE

F M

D



D FE F M
White

box √ √ √ √
Black
box X X X X

D FE F M
White

box √ √ √ √
FE

F M

D

result

Black-box attack
• White-box attacks are not realistic in practice.
• Attackers usually have the lowest level of knowledge 

about classifier’s detection process
• They are only allowed to know the final classification 

result (either benign or malicious)  è Black-box attacks



• Develop an adaptive adversary that automatically generates 
adversarial example (malware) against black-box classifiers
• Goals

• Test the robustness of existing classifiers against advanced attacks
• Try to construct more robust classifiers

• Adversarial examples must … 
• Maintain the maliciousness of the original malicious file  
• Evade the target classifier 

Malware

Benign   

Automating malware generation

Classifier 
Evasive

Malware
Generator



• Automatically generating adversarial example to evade 
PDF classifier

• The flow chart of EvadeML

Target
classifier 

Attack 
scenario

Strategy to 
evade classifiers

Strategy to 
maintain maliciousness 

EvadeML PDFrate
Hidost

Black-box 
attack

Genetic programming 
(Random mutation) X

EvadeML

Target 
Classifier

PDF 
Parser

Genetic 
Operator

Select 
Variants

Fitness 
Function

Oracle

https://evademl.org/



Genetic 
Operator

Example of insertion operation

Genetic operators 
• Generating variants by mutating the PDF malware
• Three operations for random mutation

• Deletion: Object is removed
• Insertion: Object is inserted (from benign file) 
• Replacement: Object is replaced (from benign file)



• Classification threshold value is zero (0)
•  ≤  : benign  
•  >  : malware

Target 
Classifier

- 0.4 Benign

Hidost

Bypassing Hidost

Target 
Classifier 0.1 Malware

Hidost



• Classification threshold value is 0.5
•  ≤ .  : benign
•  > .  : malware

Bypassing PDFrate

Target 
Classifier

0.2 Benign

PDFrate

Target 
Classifier 0.8 Malware

PDFrate



1 Maliciousness 
O

• Verifying whether variant maintains the original malicious 
behavior
• Cuckoo sandbox runs a submitted sample with several 

virtual machines in parallel   

Oracle 0 Maliciousness 
X

Oracle: Cuckoo Sandbox

Oracle



Fitness 
Function

Oracle

Target 
Classifier

Hidost

1

Benign 
(≤  ) x (-1)

Fitness score 
• Fitness score of each generated variant
• High scores are better 



• Fitness score of each generated variant
• High scores are better 

Fitness 
Function

Oracle

Target 
Classifier

1

Benign 
(≤ .  )0.5 -

PDFrate

Fitness score 



Select 
Variants

Fitness 
Function

Oracle

Target 
Classifier

Genetic programming
• The process continues over multiple generations until the 

adversarial example is created
• No learning-based intelligence in generating variants

Evasive
Success

Evasive
Fail

Genetic 
Operator



Trials to evade classifiers



• All generated variants must go through the oracle
• Due to lack of intelligence, most variants are generated 

randomly, losing the original maliciousness
• Hence, the speed to generated evasive malware is high

è > 120 hours are required

Limitations

0 50 100 150

PDFrate

Hidost

Hours



Our approach
• To overcome the limitations of EvadeML, we employ a 

generative ML model that can automatically generate 
adversarial examples.
• By learning the structures of both benign and malicious 

PDFs, the model aims to simultaneously achieve two goals: 
evading classifier and maintaining maliciousness.

Evading classifier Maintaining maliciousness



• The generator model must not modify the features that 
are related to the malicious behavior 
• Let S be the entire feature set, S’ be the features related to 

the malicious behavior
• We have another ML model that guides the generator to 

only modify the features in S-S’.

Learning to keep maliciousness

S

S’



Taxonomy of generative models

<Ian Goodfellow, 2016>



Inspired by GAN
• Generative Adversarial Network (GAN)
• Suitable in generating variants

Discriminator

Generator

Z
Random 

noise

X’
Generated

X
Real

Real

Generated

Cost 
Function



Our way to keep maliciousness
• Use the discriminator as a assistant tool to find S-S’           

and only modify those features
• Hence, successfully maintain the original maliciousness 

Generator

Discriminator

Malware

Generated

Cost 
Function

refine S-S’



• 13 times faster than EvadeML (to evade Hidost)
• 30 times faster than EvadeML (to evade PDFrate)

Speed comparison with EvadeML

0 20 40 60 80 100 120 140 160

PDFrate

Hidost

Hours

EvadeML new methodour



• Attack against commercial anti-virus engines
• Achieved more than 60% evasion success rate in 27 engines

Evasion success rate



• EvadeML has been subverted
• Usenix Security ’19: Retraining ML PDF classifiers with S’
• Usenix Security ’20: Enhancing robustness of Hidost and PDFrate

• Extension to binary malware
• Binary has much more complex structures/semantics than PDF
• The challenge is difficult to retain code semantics which can easily 

be broken if binary malware is randomly mutated
• Maliciousness will be lost if the code semantics is not retained
• IEEE Security & Privacy ’20 : generate Android malware by             

selecting appropriate benign features that preserve 
the original code semantics

Arms race is on-going…

If code semantics is broken, 
malicious node is non-reachable

(Lost maliciousness) 




