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Progressive Growing of GANs for Improved Quality, Stability, and
Variation (PGAN) by Nvidia Team

Image source: https://research.nvidia.com/publication/2017-10_Progressive-Growing-of
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GAN architecture continues to be developed and published.

Number of Proceedings of Machine Learning (ICML)
with the Keyword "GAN"

Number of Papers Published
A

103

ICML | 2020

Thirty-seventh International

Conference on Machine Learning

2017 2018 2019

» Year of ICML
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Why Is this a problem?

2 Ef AL
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took decisive action on sci %
SHESA0|EC| EHH0|3 Y - 771E & F

#EcologicalCrisis? Wy @ L

The video may be fake, but the information it contains is
genuine. #TellTheTruthBelgium

Watch it in full & extinctionrebellion.be/en/tell-the-tr...

do

|\

<> Code ssues 28 Pull requests 3 Actions Projects 0

€Mm £

Avatars for Zoom, Skype and other video-conferencing apps.

<0- 147 commits ¥ 4 branches [ 0 packages

Deepfake
pornography
websites

Branch: master | New pull request

Tl alievk Update README md

ISSUE_TEMPLATE

 githuby/ add commands for getting system info

add avatars

I avatars

Added Teams as verified supported softward

et default CAMID=2 for Mac (#149)

. scripts

gitmodules fix versions & rm submodules

LICENSE.md

NSE.md

README.md Update README.md

cam_fomm.py print avatar key numbers
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.

FAKE
STUDIO

Image source: http://news.naver.com/main/read.nhn?mode=LSD&mid=sec&sid1=102&0id=008&aid=0003748739 (Money Today)
Tmaae source: htton://post naver com/viewer/postView nhn?voliimeNo=139939725& memberNo=275195 (News 1)



http://news.naver.com/main/read.nhn?mode=LSD&mid=sec&sid1=102&oid=008&aid=0003748739
http://post.naver.com/viewer/postView.nhn?volumeNo=13993925&memberNo=225195
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video features

British
actress
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“Deeptfakes don’t hurt people,
People using deepfakes hurt people.”

AMEE ol x| = A2 =5H 0|37} OfLE}
B2 0|2 S «248” ot= AFEO|CE
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Current Talk

Intro to Deepfake Generation and Detection Methods
Towards the Universal Detection
- Few-shots/Unbalanced Dataset
- One-Class detection
- Transfer Learning
Government/Industry Efforts
Conclusions
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Relevant Research Publications on DeepFakes Detection (2018-19)

[1] Shahroz Tariq, Sangyup Lee, Youjin Shin, Ho Young Kim, and Simon S. Woo* '"Detecting Both
Machine and Human Created Fake Face Images In the Wild", 2nd International Workshop on
Multimedia Privacy and Security (MPS 2018), co-located with 25th ACM Conference on Computer and
Communications Security (CCS 2018), Toronto, USA, 2018

[2] Shahroz Tariq, Sangyup Lee, Youjin Shin, Ho Young Kim, and Simon S. Woo*, "GAN is a Friend
or Foe? A Framework to Detect Various Fake Face Images'', ACM SAC Cyprus April 2019,

(BK Computer Science 32| IF=1)

[3] Hyeonseong Jeon, Youngoh Bang, and Simon S. Woo*, '"FakeTalkerDetect: Effective and
Practical Realistic Neural Talking Head Detection with a Highly Unbalanced Datase', 10th
International Workshop on Human Behavior Understanding (HBU), held in conjunction with ICCV'19
Nov, 2019 - Seoul, S. Korea

[4] Junyaup Kim, Siho Han, and Simon S. Woo*, "Poster: Classifying Genuine Face images from
Disguised Face Images," 2019 IEEE International conference on Big Data (IEEE BigData 2019), Los
Angeles, CA, USA 11
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Relevant Research Publications on DeepFakes Detection (2020)

[5] Hyeonseong Jeon, Youngoh Bang, and Simon S. Woo*, “FDFtNet: Facing Off Fake Images
using Fake Detection Fine-tuning Network”, SEC 2020 International Conference on Information
Security and Privacy Protection (IFIP-SEC), Solvenia, Sept 2020 (BK Computer Science [F=1)

[6] Hasam Khalid and Simon S. Woo*, "OC-FakeDect: Classifying Deepfakes Using One-class
Variational Autoencoder", Workshop on Media Forensics, CVPR 2020, Monday, 15th June 2020,
Seattle, USA

[7] Hyeonseong Jeon, Youngoh Bang, Junyaup Kim, and Simon S. Woo*, "T-GD: Transferable
GAN-generated Images Detection Framework." Thirty-seventh International Conference on
Machine Learning (ICML), Vienna, Austria, 2020 (BK Computer Science 1F=4)

8] MAR, Z&d, S|, AO|HEY, =L HH0|3 7= o™ A M =& CSEer A+,
SN H B S8t3| 8HA S0 F| (CISC-S), 2020
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Created by our team using Photo editing tools

13
Image source: License free image from Google, photoshopped by our team
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Introduction to
Deepfake Generation Methods
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o 7IW Y 4’8 methods

@)

@)

@)

@)

(@)

DeepFakes — (nttps://github.com/deepfakes/faceswap)

Face2Face — (https://github.com/ondyari/FaceForensics)

FaceSwap — (nttps://github.com/ondyari/FaceForensics/tree/master/dataset/FaceSwapK owalski)

Neural Textures — (https://github.com/ondyari/FaceForensics)

DeepfakeDetection — (nttps://qithub.com/ondyari/FaceForensics)

o 7MW HAME 70007 dataset: FaceForensics++

(TUM - Visual Computing Groupm)

(©)

(©)

DeepFake (& 34 1,0007H)

Face2Face (& Z % 1,0007H)

Unique Origin Unique Future

Source Actor

Real-time Reenactment

Reenactment Result

<A A2} Face2Face Of| Al
Hi 2 Y= 2| facial expressiona FEl2| =0 Yal>

I==Ne:PN;
Faceswap (O o o 110007H) Zhttp://www.niessnerlab.org/projects/roessler2019faceforensicspp.html

Neural Textures (& @4} 1,0007H)
DeepfakeDetection (& &4 3,0007f made by Google)

Real (source) — 7tAt & G0 ArE 2l TN S


https://github.com/deepfakes/faceswap
https://github.com/ondyari/FaceForensics
https://github.com/ondyari/FaceForensics/tree/master/dataset/FaceSwapKowalski
https://github.com/ondyari/FaceForensics
https://github.com/ondyari/FaceForensics
http://www.niessnerlab.org/projects/roessler2019faceforensicspp.html
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Deepfake Detection Models
CENERE M)

[1] Shahroz Tarig, Sangyup Lee, Youjin Shin, Ho Young Kim, and Simon S. Woo* "Detecting Both
Machine and Human Created Fake Face Images In the Wild", 2nd International Workshop on
Multimedia Privacy and Security (MPS 2018), co-located with 25th ACM Conference on Computer and
Communications Security (CCS 2018), Toronto, USA, 2018

[2] Shahroz Tariq, Sangyup Lee, Youjin Shin, Ho Young Kim, and Simon S. Woo*, "GAN is a Friend or
Foe? A Framework to Detect Various Fake Face Images', ACM SAC Cyprus April 2019,

(BK Computer Science 22| IF=1)
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CelebA-HQ

20
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e Red Boxes
o Input for the classifier after alignment.

e Yellow Boxes

o Marked by our filtering algorithm to ignore.

maxbor yidtn, + MaxboTpeight

V3

> boTyigih, + DOTpeigh

21
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Detection Methodology - GAN

PGGAN

CelebA

22
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Baselines & ShallowNet

e Baselines

a. VGG 16&19

b. ResNet50

c. InceptionV3

d. InceptionResNetV?2
e. DenseNetl121

f.  XceptionNet

e QOur Method

a. ShallowNet V1, V2 & V3
23
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Evaluation - GAN

VGG16 56.69 55.13 57.13 60.13

NASNet 83.95 90.55 92.55 96.55
ShallowNetV2 79.82 99.98 99.99 99.99

Ensemble 93.99 99.99 99.99 99.99
ShallowNet
(V1&V3)
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Demo
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e https://www.youtube.com/watch?v=kHUb6XVO0B4&feature=youtu.be
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Few-Shot Learning
for
Talking Head Detection

[3] Hyeonseong Jeon, Youngoh Bang, and Simon S. Woo*, '"FakeTalkerDetect: Effective
and Practical Realistic Neural Talking Head Detection with a Highly Unbalanced
Datase', 10th International Workshop on Human Behavior Understanding (HBU), held in

conjunction with ICCV'19 Nov, 2019 - Seoul, S. Korea



Data-driven Al

Securlty HCI (DASH) Lab Unique Origin Unique Future

Main Challenges

e New generation methods
o How to handle new attacks and generation methods?

o Is there a way to leverage existing architectures or pre-trained models?

e Too long to generate new training dataset
o Lack of training dataset?
o Leverage existing dataset?

=>» Few-Shot Learning with re-usable approach?
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FakeTalkerDetect
(Pre-training and Siamese Network)

( B

Real

by
—

VoxCeleb2
VoxCeleb2 . .
; Finetuning
Pretrained > S;
" AlexNet Model lamese
Network
Fake : |

i Pretraining Real Classification
‘- AlexNet \ by Distance

& (Step2) &2

VoxCeleb2
Few-Shot GAy

\_
(Step 1]

[3] Hyeonseong Jeon, Youngoh Bang, and Simon S. Woo*, ""FakeTalkerDetect: Effective and Practical Realistic
Neural Talking Head Detection with a Highly Unbalanced Datase', 10th International Workshop on Human
Behavior Understanding (HBU), held in conjunction with ICCV'19 Nov, 2019 - Seoul, S. Korea
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Pre-training and Siamese Network

. Step 1 and 2. First, pre-trains well-known fake image
classification model such as AlexNet, using real and fake image
pairs.

. After pre-training, we further focus on improving the detection
performance.

. Step 3. the Siamese network learns two input pairs (e.g., real-
real) and evaluates sum of square error of each pair, where the
higher error means that they are different classes.

- We use mean squared error loss function for fine-tuning, where
this loss function runs over pairs of samples.
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FDFtNet: Facing Off Fake
Images using Fake Detection
Fine-tuning Network

Hyeonseong Jeon, Youngoh Bang, and Simon S. Woo*, SEC 2020
International Conference on Information Security and Privacy Protection
(IFIP-SEC), Solvenia, Sept 2020 (BK Computer Science [F=1)
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Objectives

In real world:

eDeepfake dataset is small (imbalanced dataset)

eNew methods will be coming

eNeed to reuse existing architectures and datasets as much as possible
eCan the existing methods can be fine-tuned on a few dataset?

eNced for a new robust fine-tuning neural network-based architecture

Fake Detection Fine-tuning Network (FDFtNet)
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FDFtNet

e Explore Fine-Tune Transformer that uses only the attention
module and the down-sampling layer.

e This module is added to the pre-trained model and fine-tuned on
a few data to search for new sets of feature space to detect fake
1mages.

e We experiment with our FDFtNet on the GANs based dataset
(Progressive Growing GAN) and Deepfake-based dataset
(Deepfake and Face2Face) with a small input image resolution
of 64 x 64 that complicates detection.

Our FDFtNet achieves an overall accuracy of 90.29%
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Architecture

[Input Images | (1) pre-trained model -
_ Real - (backbone network) [(3) MoblleNet]

block V3

SR =< =4 9 b 5 ® Real
s’
7’
7’
- @
-~
- ki

The main reason we apply self-attention modules in FTT is to overcome the limitations of CNN in achieving
long-term dependencies, caused by the use of numerous Conv filters with a small size.
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Fine Tune Transformer (FTT)

A three-time

application of self-

attention modules allows
Transpose Eq. 1 us to explore and learn

ﬁ Attention map ﬂ diverse deep features

Softmax of the 1nput images via
fine-tuning.
é‘ >(+) > E

Batchdot 0 Addition

Eq.2 A Self-attention
feature maps
I y
Eq.3

Use different feature extraction from images using the self-attention,
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Evaluation results

Model Dataset PGGAN Deepfake Face2Face
Backbone ||ACC (%) AUROC||ACC (%) AUROC||ACC (%) AUROC

SqueezeNet baseline 50.00  50.00 50.00  50.00 50.00  50.00
FDFiNet (Ours)|| SqueezeNet 88.89  92.76 92.82 97.61 87.73  94.20
ShallowNetV3 baseline 85.73  92.90 89.77 9281 83.35  88.49
FDFitNet (Ours)||ShallowNetV3|| 88.03  94.53 94.29  97.83 84.55 93.28
ResNetV?2 baseline 84.80  88.58 81.52  89.72 58.83 6247
FDFiNet (Ours)|| ResNetV2 84.83  94.05 91.03  96.08 85.15  92.91
Xception baseline 87.12 9496 95.10  98.92 85.78  93.67
FDFiNet (Ours) Xception 90.29 05.98 97.02 99.37 96.67 98.23

Our approach provides a reusable fine-tuning network, improving the existing
backbone CNN architectures. FDFNet requires only small amount data for fine-
tuning and can be easily integrated with popular CNN architectures.
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Extremely
Highly Imbalanced
Dataset
(No deepfake training data at all)
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OC-FakeDect: Classitying
Deepfakes Using One-class
Variational Autoencoder

Hasam Khalid, and Simon S. Woo

CVPR Workshop on Media Forensics 2020 - Seattle, USA

DASH Lab, Sungkyunkwan University, South Korea
hasam.khalid@g.skku.edu, swoo@g.skku.edu
June 15 2020
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Introduction

o We present One-class classification based deep-
learning approach (OC-FakeDect)
o Classifying Real and Fake Images using One-class
Variational Autoencoder
o Trained only on Real images
o More generalizable approach
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OC-FakeDect: One-class Deepfake Detection

e One-class Variational Autoencoder (OC-VAE) Architecture
Diagram with latent space reparameterization

/ Latent Space \

\ Reparameterization

Output Image (bgr)

Decoder 3x100x100

/l;1put Image (bgr)
3x100x100 Encoder

16x100x100
32x50x50

64x50x50

- 32x25x25 32x25x25
(& s/ -
Conv2D Conv2D Conv2D Conv2D Cony2D Conv2D Conyv2D Cony2D
BatchNorm| |BatchNorm| |BatchNorm| |BatchNorm| BatchNorm| |BatchNorm| [BatchNorm atchNorm
ReLU RelLU ReLU ReL.U ReLU ReLU ReLU ReLU

o

Dataset:
e Used FaceForensics++ HQ dataset.
e Used Real images for training, and Real and Fake images for testing.
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T-GD: Transferable GAN-generated Images
Detection Framework

Hyeonseong Jeon!, Youngoh Bang!, Junyaup Kim?, and Simon S. Woo!
DASH Lab, Sungkyunkwan University,

South Korea
Thirty-s nth International
Conference on Machine Learning

41
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Focus on Detecting GAN generated images through
Transfer Learning

* Real images [CelebA, CelebA-HQ, FFHQ]

42
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Getting harder to detect GANSs

GAN-images are getting sophisticated that erasing artifacts,
genuine patterns on the image.

Example image

StarGAN (2017.11) StyleGAN2 (2019.12)

43
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Most approaches show relatively weak
results for transfer learning ability

44
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Motivations

1. High performance in different GAN-1mage detection
2. Transfer-learning with small target data

3. No catastrophic forgetting in this transfer process

4. Generalized way to augment input image to detect GAN-1mage

45
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Real Images _ GAN-Images Teacher Classifier

Pre-Trained
Teacher Model
on Source Data

Convolutional
Regularization

Fully-Co

Target dataset L?-regul

L? -Starting Point

-

Cross-Entropy Loss
~

Self-training
Feedback

Source

Real Images GAN Images

Predict

*)
®

\
-ﬁegualarization
Loss

hnected
prization

Student Classifier

Pre-Trained
Student Model
to be Trained on

Target Data

Cross-Entropy Loss

Final Loss

_Real knages+GAN-Images
[ | v

Target

46
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Results

Method Category Zero-shot (Pre-trained model) Transfer Learning
Dataset PGGAN  StarGAN  StyleGAN  StyleGAN2 | PGGAN  StarGAN  StyleGAN  StyleGAN?2

GeneralTransfer PGGAN 99.91% 56.81% 49.47% 49.32% 99.86% 87.06% 54.17% 54.18%

EfficientNet- B0 StarGAN 66.47% 99,88% 52.01% 52.10% 95.90% 89.87% 99.03% 99.04%

(Base model) StyleGAN 49.80% 50.04% 99.96% 99.97 % 66.839% S5112% 99.94% 99.95%
StyleGAN2 45.23% 49.00% 99.99% 99 .99% 91.33% 88.16% 45.26% 47.37% ]

ForensicTransfert | PGGAN 97.15% 50.27% 53.57% 53.27% 69.35% 72.40% 76.50% 76.50%
StarGAN 47.09% 85.349 49.51% 49 48% 90.14% S51.32% 53.14% 53.14%
StyleGAN 49.23% 49.66% 99.12% 99,97 % 76.57% 58.93% 65.83% 65.85%
StyleGAN2 | 49.22% 49.66% 99.12% 99.12% T6.58% 58.94% 65.84% 65.84%

T-GD PGGAN 99.91% 56.81% 49.47% 49.32% 95.87 % 91.61% 98.12% 98.13%

EfficientNet-B0 StarGAN 66.47% 99.88% 52.01% 52.10% 04949 97.32% 97.29% 93.34%

(Base model) StyleGAN 49.80% 50.04% 99.96% 99.97 % 84.92% 90.00% 97.83% 97.71% :
SI}' leGAN2 45.23% 49.00% 99.99% 99.99% 84.91% 90.01% 97.83% 97.71%

T-GD PGGAN 99.81% 61.25% 49.76% 4991% 94.91% 93.21% 87.37% 87.58%

ResNext32x4d StarGAN 41.43% 99.78% 48.37% 48.50% O8.88% 96.15% 91.48% 91.26%

(Base model) StyleGAN 41.05% 49.16% 99.99% 99.99% 85.93% 79.69% 94.31% 94.31% -
StyleGAN2 38.90% 50.31% 99.90% 99.88% 87.20% 80.19% 98.39% 95.38%

47
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Conclusions

1.High performance on GAN-1mage detection without metadata.

2. Transfer learning method with little target dataset to prevent
catastrophic forgetting.

3.General augmentation method on GAN-1mage detection.

48
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Current Government
&Industry Efforts

49
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Concluding Remarks

e Balance between advancement of Al vs. Security/Privacy
e Malicious use
e Good Al vs. Bad Al

Deepfakes don’t hurt people, people using deepfakes hurt people.”

AtEhS ol Xl= A2 BEH 0|37} orL 2t ©HEo|3 & «24-8~
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Questions & Comments

Thank Youl!

SFAO|H/ G Y (= 2T H|O|E{AtO| A A Fgtstal
Contact us: swoo@g.skku.edu

https://dash.skku.edu/
https://dash-lab.github.io/

Student Paper Authors at SKKU
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