Montage: A Neural Network Language
Model-Guided JavaScript Engine Fuzzer

Suyoung Lee, HyungSeok Han, Sang Kil Cha, Sooel Son

Graduate School of Information Security (GSIS) , KAIST

KAIST

Popularity of Web Browsers

5000

4 000

2 000

4 billion users

Number of users in millions

[]
| 1
| —— -
_ I
—N T

1 000

2014 2015 2016 2017 2018%*

@® Chrome @ Safari IE @ Firefox @ Opera Edge @ Other

MI ST Source: https://www.statista.com/statistics/543218/worldwide-internet-users-by-browser/ 2

Vulnerable Web Browsers

= Browser-based cyber threats = Most exploited applications in 2018

Browser autofill used to steal personal details
in new phishing attack

awmes MarioNet attack exploits HTMLS to

tricked ini

_develoner - -aate botnets

earchers created a new browser-based :
“““ :~Nat. that exploits an HTML

Recent Firefox Zero-

Res

A

Office

@ Browser

Day Flaw Was Used i in '
Attacks Against Coinbase’s E - AhArol
| S Employees J
500 Million Malicious Ads Attack iPhone Users
By Paul Wagenseil April 17,2019 Antivirus
Apple iPhone users were hit by millions of malicious ads early in April, and researchers fear a second round of
attacks this weekend. v
00000 5%/
A gang of cybercriminals is using a flaw in the Chrome for iOS web browser to bombard iPhone users with pop-up windows https://www.kaspersky.com/about/press-releases/2018_microsoft-office-exploits
and fake ads that whisk the users to websites that try to steal login credentials and bilk them out of money.
https://mww.theguardian.com/technology/2017/jan/10/browser-autofill-used-to-steal-personal-details-in-new-phising-attack-chrome-safari
https://searchsecurity.techtarget.com/news/252458522/MarioNet-attack-exploits-HTML5-to-create-botnets
https://cointelegraph.com/news/recent-firefoxs-zero-day-flaw-was-used-in-attacks-against-coinbases-employees
https://mww.tomsguide.com/us/ios-malvertising-barrage,news-29880.html
KAIST 3

4 _ox)

1d

uid=0(root) gid=0(root) groups=0(root)

JS engine vulnerabillities pose critical security threat!

JS Engine Fuzzing

= JS Engines

C @ £

Spider Chakra JavaScript
Monkey Core Core

* Fuzzing (Fuzz Testing)

- An automated software testing that involve providing invalid or unexpected input to a
program under testing (PUT).

- oY s restcoo ‘92
. &

JS Engine I
Fuzzer Chakra

_) Core (PUT)

KAIST

How Can We (Fuzzer) Generate Test Input?

Proof of Concept (PoC)
for CVE-2017-8586

var vl = {
'a': function () {}
}
var v2 = 'a';
(function () {
try {
} catch ([v® = (vi[v2].__proto__(1, 'b")))1) {
var v = 4;

} Chakra

VOt Core (PUT)
1O

KAIST 6

Previous Work

Abstract Syntax Tree
(AST)
var vl = {
'a': function () {}
}
var v2 = 'a’;

(function () {

> try {

} catch ([v® = (vi[v2].__proto__(1, 'b'))D {
var ve = ;

h

ve++;

1 O;

KAIST 7

Previous Work

Abstract Syntax Tree)
(AST) 1. Mutation-based fuzzers

LangFuzz, IFuzzer, and GramFuzz

- Combining AST subtrees extracted from JS seeds

2. Generation-based fuzzers

- Jjsfunfuzz

- Applying JS grammar rules from scratch

KAIST

Previous Work

Abstract Syntax Tree)
(AST) 1. Mutation-based fuzzers

- LangFuzz, IFuzzer, and GramFuzz

- Combining AST subtrees extracted from JS seeds

2. Generation-based fuzzers

- Jjsfunfuzz

- Applying JS grammar rules from scratch

KAIST

Previous Work: Mutation-based JS fuzzers

= LangFuzz, IFuzzer, and GramFuzz

- They combine AST subtrees of seed JS tests

Subtree 1 Subtree 2

KAIST

Generated code

None of the existing fuzzers consider

Motivational Question

Current AST A set of applicable AST subtrees

Lh MRS

Are there any similar patterns between bug-triggering JS code?

KAIST

Study on JS Engine Vulnerabilities

« Analyzed patches of 50 CVEs assigned to ChakraCore

CVE-2017-0071

18% of patches revised
CVE-2017-0141 GlobOpt.cpp
CVE-2017-0196

14% of patches revised
JavascriptArray.cpp

CVE-2018-0953

Patches of 50 CVEs
KAIST

Study on JS Engine Vulnerabilities

« Analyzed patches of 50 CVEs assigned to ChakraCore

CVE-2017-0071

18% are related to
CVE-2017-0141 global optimization

CVE-2017-0196

14% are related to
JavaScript array

CVE-2018-0953

Patches of 50 CVEs
KAIST

Study on JS Engine Vulnerabilities

« Compared AST subtrees from two sets

At August, 2016 After August, 2016

JS Test 1

CVE-2016-3247

Over 95% subtrees from
PoCs exist in regression tests

JS Test 2

CVE-2016-7203

JS Test 2038 CVE-2018-0980
2038 JS tests from 67 PoCs triggering
ChakraCore repo ChakraCore CVEs

KAIST

Our Goal

1. To leverage the functionality of JS regression tests
- Mutation based approach
2. To learn the relationship of AST subtrees

- Modeling the relationship between AST subtrees

KAIST

Our Building Block - Fragments

const vO = 0O;

Program
[Program] [VarDeclaration]
bodv [N |
(body kind ec
VarDeclaration

[VarDeclarator]

Kind Nd [VarDeclaration]
[VarDeclarator]

id init
/\ [Va rDecIarator Identifier Literal

[Identifier][Literal]
id init name value
name value /\
[Identifier Literal

A fragment is a subtree of depth 1

KAIST

Montage Overview

=)
A Sequence of Trained

Fragments NNLM
Preprocessing Training AST Mutation
[JS i!i

KAIST

Preprocessing — Normalization

* Normalizing IDs

- To decrease the # of unique fragments, rename IDs

[VarDeclarator] [VarDeclarator]
d |n|t id |n|t
Identifier] Literal Identlfler theral

!name !value !name !value

KAIST

Preprocessing — Normalization

* Normalizing IDs

- To decrease the # of unique fragments, rename IDs

[VarDeclarator] [VarDeclarator]
d |n|t id |n|t
Identifier] Literal Identlfler theral

‘name !value ‘name !value

KAIST

Preprocessing — Fragmentation

KAIST

Fragmentation

Program

body

VarDeclaration

Normalized AST

Program

body

VarDeclaration

A sequence of fragments

21

Preprocessing — Fragmentation

* Fragmentation

Program [VarDeclaration]

body kind Ncl
VarDeclaration] f .
[VarDeclaration [VarDeclarator]
kind Nd \ /
[VarDeclarator]

Normalized AST A sequence of fragments

KAIST

Preprocessing — Fragmentation

* Fragmentation

Program [VarDeclaration]
body kind Ncl
VarDeclaration [VarDeclarator]
[VarDeclarator]

VW [VarDeclarator]
[Identifier][Literal] VW

[Identifier][Literal]

Normalized AST A sequence of fragments

KAIST 23

Preprocessing — Fragmentation

* Fragmentation

Program [VarDeclaration]
k body ’ kind Ncl
VarDeclaration [VarDeclarator]
[VarDeclarator] [Identifier]
[Identifier] VW name
‘name [Identifier] [Literal]

Normalized AST A sequence of fragments

KAIST

Preprocessing — Fragmentation

* Fragmentation

Program [VarDeclaration]
k body ’ kind Ncl
VarDeclaration [VarDeclarator]
[VarDeclarator] [Identifier] [Literal]
!Value [Identifier] [Literal]

Normalized AST A sequence of fragments

KAIST

Montage captures

between fragments

Training Objectives

1. Given a sequence, predict the distribution of next fragments

DR IR N

A sequence of LSTM model Probability distribution of
preceding fragments next fragment

KAIST

Training Objectives

2. Prioritize the fragments that have a correct type

[

Program

J

body

[FunctionDecl

J

KAIST

[FunctionDecl]

id) body
params

[Identifier][Identifier][BlockStmt]

A given sequence of preceding fragments

Training Objectives

2. Prioritize the fragments that have a correct type

[Program] [FunctionDecl]
id) body
body — params
[FunctionDecl] [Identifier] [Identifier] [BlockStmt]

A given sequence of preceding fragments

To be syntactically correct, the root of the next fragment should be Identifier!

KAIST 29

AST Mutation const vl = v@ + 1;

Program

body

VarDeclaration

kind Ncl
[VarDeclarator]

[Identifier] [BinaryExpr]
right

name left
[Identifier] [Literal]
‘ name ! value

K’.\IST Seed AST

operator

AST Mutation

(p

Program

\ J

body

(p

VarDeclaration

\\\\\\géd

[VarDeclarator]

kind

name

Identifier]

name

KAIST Remove a subtree

AST Mutation

Program

body

VarDeclaration

kind Ncl
[VarDeclarator]

[Identifier]

l name

KAIST

[BinaryExpr]

AST Mutation i & O;% f

body Input the sequence of 4 fragments
) representing the current AST

VarDeclaration

kind Ncl
[VarDeclarator]
/N Trained

[Identifier] [BinaryExpr] LSTM model

l name

KAIST

AST Mutation

Program

body

VarDeclaration

kind Ncl
[VarDeclarator]

[Identifier] [BinaryExpr]

A &

KAIST 0.76 0. 0.001

Trained
LSTM model

The probability distribution of
the next fragment

AST Mutation

Program

body

VarDeclaration

\\\\\\gsd

kind
[VarDeclarator]

[Identifier

J

KAIST

l name

[BinaryExpr]

L &

0.76 0. 0.001

Trained
LSTM model

Randomly select one
from Top K fragments

AST Mutation

Program

body

VarDeclaration

kind Ncl
[VarDeclarator]

/ | Trained

e LSTM model
[Identifier]

l name

KAIST

AST Mutation const vl = vl / v@;

Program

body

VarDeclaration

\\\\\\géd

VarDecIarator

/N Trained

L
[Identifier] BinaryExpr] STM model

name left operator
[Identifier] [Identifier]
l name ‘ name

KAIST Repeat until all leaf nodes become terminal symbols

kind

right

Resolving Reference Errors

var str = ‘Hello World’;
foo();

function foo () {
var obj = Object();
num = 10;
b.toUpperCase(); // reference error

Code generated from the previous step

KAIST

38

Resolving Reference Errors

var str = ‘Hello World’;
global scope:

'FOO(); str => string
foo => function
function foo () { num => number
var obj = Object(); foo:
num = 10; obj => object
b.toUpperCase();
} Identifier map

KAIST 39

Resolving Reference Errors

var str = ‘Hello World’;
global scope:

'FOO(); str => string
foo => function
function foo () { num => number
var obj = Object(); foo: |
num = 10; obj => object
b.toUpperCase();
} Identifier map

If possible, statically infer the type of undeclared identifiers!

KAIST 20

Resolving Reference Errors

var str = ‘Hello World’;
foo();

function foo () {
var obj = Object();
num = 10;
b.toUpperCase();

} b is a string

global scope:
str => string
foo => function
num => number
foo:
obj => object

Identifier map

If possible, statically infer the type of undeclared identifiers!

KAIST

41

Resolving Reference Errors

var str = ‘Hello World’;

foo();

function foo () {
var obj = Object();
num = 10;
str.toUpperCase();

}

Replace b with a declared identifier str

KAIST

global scope:

foo:

str => string
foo => function
num => number

obj => object

Identifier map

42

Experiment Setup

Unpatched Bugs

Dataset

January, 2017 February, 2017
Dataset ChakraCore 1.4.1

« Collected 33.5K unique JS files

- Regression tests from repository of four major JS engines and Test262

- PoCs of known CVEs

« Ran fuzzers against ChakraCore 1.4.1

« JS code testing unpatched bugs are not in our dataset!
KAIST

Comparison to State-of-the-art Fuzzers

* For each fuzzer, ran 5 trials of a 72 hours-long fuzzing campaign
- CodeAlchemist: A state-of-the-art semantics-aware JS fuzzer, NDSS'79
- IFuzzer: An evolutionary JS fuzzer, ESORICS’76

- jsfunfuzz: A JS fuzzer developed by Mozilla

of Unique Crashes (Known CVEs)

Metric Build
Montage CodeAlchemist jsfunfuzz IFuzzer
Release 23 (7) 15 (4) 27 (3) 4 (1)
Median
Debug 49 (12) 26 (6) 27 (4) 6(1)

KAIST

Comparison to State-of-the-art Fuzzers

* The # of found unique crashes (known CVEs)

Jsfunfuzz

8 ()
3(2)

105@®) ¢~ 4)

Montage CA

KAIST

45

Effect of Language Models

« For each approach, ran 5 trials of a 72 hours-long fuzzing campaign
1. A random fragment selection w/o model: The baseline of Montage
2. A char/token-level RNN: A prevalent neural language model

3. A Markov model: A simple language model

of Unique Crashes (Known CVEs)

Metric Build
Montage Random ch/token RNN Markov
Release 23 (7) 12 (3) 1 (0) 19 (6)
Median
Debug 49 (12) 31(7) 3 (0) 44 (11)

KAIST %6

Effect of the LSTM model

« The # of appended fragments to compose a new subtree

- e ——————————
S
I=
O
o
()
al
O
=
©
= 25- - Crashes
&
- - CVES
O 0- : :
0 15 25 5052 75 100

of Appended Fragments
KAIST 47

Effect of Resolving Reference Errors

« For each approach, ran 5 trials of a 72 hours-long fuzzing campaign

of Unique Crashes (Known CVEs)

Metric Build
Montage Montage w/o resolving step
Release 23 (7) 12 (4)
Median
Debug 49 (12) 41 (9)

The resolving step helps to find more bugs!

Montage still finds many bugs without the resolving step!
KAIST "

Finding Real-World Bugs

 We ran Montage on the four major JS engines for 1.5 months
- Found 37 previous bugs in total.
» 34 bugs including two CVEs from ChakraCore 1.11.7
» One bug from V8 7.4.0 (beta)

» Two bugs including one CVE from JSC 2.23.3

KAIST

49

Conclusion

- Conducted systematic studies on JS engine vulnerabilities
- Proposed the first NNLM-guided JS engine fuzzing tool

- Found 37 real-world bugs from the latest JS engines

KAIST

50

Question?

KAIST

