Montage: A Neural Network Language Model-Guided JavaScript Engine Fuzzer

Suyoung Lee, HyungSeok Han, Sang Kil Cha, Sooel Son

Graduate School of Information Security (GSIS), KAIST

Popularity of Web Browsers

4 billion users

Vulnerable Web Browsers

Browser-based cyber threats

Browser autofill used to steal personal details in new phishing attack Chrome, S tricked in MarioNet attack exploits HTML5 to create botnets developer Researchers created a new browser-based Net. that exploits an HTML5 Recent Firefox Zero-Day Flaw Was Used in **Attacks Against Coinbase's Employees** 500 Million Malicious Ads Attack iPhone Users By Paul Wagenseil April 17, 2019 Antivirus Apple iPhone users were hit by millions of malicious ads early in April, and researchers fear a second round of attacks this weekend. A gang of cybercriminals is using a flaw in the Chrome for iOS web browser to bombard iPhone users with pop-up windows and fake ads that whisk the users to websites that try to steal login credentials and bilk them out of money.

Most exploited applications in 2018

https://www.kaspersky.com/about/press-releases/2018 microsoft-office-exploits

https://www.theguardian.com/technology/2017/jan/10/browser-autofill-used-to-steal-personal-details-in-new-phising-attack-chrome-safari https://searchsecurity.techtarget.com/news/252458522/MarioNet-attack-exploits-HTML5-to-create-botnets https://cointelegraph.com/news/recent-firefoxs-zero-day-flaw-was-used-in-attacks-against-coinbases-employees https://www.tomsguide.com/us/ios-malvertising-barrage,news-29880.html

JS Engine Vulnerabilities

```
-\square \times
                    # id
https://leeswimmir
                    uid=0(root) gid=0(root) groups=0(root)
```


JS Engine Fuzzing

JS Engines

Fuzzing (Fuzz Testing)

 An automated software testing that involve providing invalid or unexpected input to a program under testing (PUT).

How Can We (Fuzzer) Generate Test Input?

Proof of Concept (PoC) for CVE-2017-8586

```
var v1 = {
    'a': function () {}
}
var v2 = 'a';
(function () {
    try {
      } catch ([v0 = (v1[v2].__proto__(1, 'b'))]) {
        var v0 = 4;
      }
      v0++;
})();
```


Previous Work

Abstract Syntax Tree(AST)


```
var v1 = {
    'a': function () {}
}
var v2 = 'a';
(function () {
    try {
      } catch ([v0 = (v1[v2].__proto__(1, 'b'))]) {
        var v0 = 4;
      }
      v0++;
})();
```


Previous Work

Abstract Syntax Tree(AST)

1. Mutation-based fuzzers

- LangFuzz, IFuzzer, and GramFuzz
- Combining **AST subtrees** extracted from JS seeds

2. Generation-based fuzzers

- jsfunfuzz
- Applying **JS grammar rules** from scratch

Previous Work

Abstract Syntax Tree(AST)

1. Mutation-based fuzzers

- LangFuzz, IFuzzer, and GramFuzz
- Combining **AST subtrees** extracted from JS seeds

2. Generation-based fuzzers

- jsfunfuzz
- Applying **JS grammar rules** from scratch

Previous Work: Mutation-based JS fuzzers

- LangFuzz, IFuzzer, and GramFuzz
 - They **combine AST subtrees** of seed JS tests

Generated code

Relationship between Building Blocks

Current AST

A set of applicable AST subtrees

None of the existing fuzzers consider their relationships!

Which combination is more likely to trigger JS engine bugs?

Motivational Question

Current AST

A set of applicable AST subtrees

Are there any **similar patterns** between bug-triggering JS code?

Study on JS Engine Vulnerabilities

Analyzed patches of 50 CVEs assigned to ChakraCore

CVE-2017-0071

CVE-2017-0141

CVE-2017-0196

•

CVE-2018-0953

18% of patches revised GlobOpt.cpp

14% of patches revised JavascriptArray.cpp

Patches of 50 CVEs

Study on JS Engine Vulnerabilities

Analyzed patches of 50 CVEs assigned to ChakraCore

CVE-2017-0071

CVE-2017-0141

CVE-2017-0196

•

CVE-2018-0953

18% are related to global optimization

14% are related to JavaScript array

Patches of 50 CVEs

Study on JS Engine Vulnerabilities

Compared AST subtrees from two sets

At August, 2016

JS Test 1

JS Test 2

•

JS Test 2038

2038 JS tests from ChakraCore repo

After August, 2016

CVE-2016-3247

CVE-2016-7203

•

CVE-2018-0980

67 PoCs triggering ChakraCore CVEs

Over 95% subtrees from PoCs exist in regression tests

Our Goal

- 1. To leverage the **functionality** of JS regression tests
 - Mutation based approach
- 2. To learn the **relationship** of AST subtrees
 - Modeling the relationship between AST subtrees

Our Building Block – Fragments

const v0 = 0;

Montage Overview

Preprocessing – Normalization

Normalizing IDs

- To decrease the # of unique fragments, rename IDs

Preprocessing – Normalization

Normalizing IDs

- To decrease the # of unique fragments, rename IDs

Fragmentation

Normalized AST

Fragmentation

Fragmentation

Normalized AST

A sequence of fragments

Fragmentation

Normalized AST

A sequence of fragments

Fragmentation

Normalized AST

A sequence of fragments

Fragmentation

Montage captures the global compositional relationships between fragments

A sequence of fragments

Normalized AST

Training Objectives

1. Given a sequence, predict the distribution of next fragments

Training Objectives

2. Prioritize the fragments that have a correct type

A given sequence of preceding fragments

Training Objectives

2. Prioritize the fragments that have a correct type

A given sequence of preceding fragments

To be syntactically correct, the root of the next fragment should be Identifier!

const v1 = v0 + 1;

Seed AST

Trained LSTM model

The probability distribution of the next fragment

Trained LSTM model

AST Mutation

const v1 = v1 / v0;


```
var str = 'Hello World';
foo();
function foo () {
    var obj = Object();
    num = 10;
    b.toUpperCase(); // reference error
```

Code generated from the previous step


```
var str = 'Hello World';
foo();
function foo () {
    var obj = Object();
    num = 10;
    b.toUpperCase();
```

```
global scope:
    str => string
    foo => function
    num => number

foo:
    obj => object
```

Identifier map


```
var str = 'Hello World';
foo();
function foo () {
    var obj = Object();
    num = 10;
    b.toUpperCase();
```

```
global scope:
    str => string
    foo => function
    num => number

foo:
    obj => object
```

Identifier map

If possible, statically infer the type of undeclared identifiers!


```
var str = 'Hello World';
foo();
function foo () {
    var obj = Object();
    num = 10;
    b.toUpperCase();
        b is a string
```

```
global scope:
    str => string
    foo => function
    num => number

foo:
    obj => object
```

Identifier map

If possible, statically infer the type of undeclared identifiers!


```
var str = 'Hello World';
foo();
function foo () {
    var obj = Object();
    num = 10;
    str.toUpperCase();
```

Replace **b** with a declared identifier **str**

```
global scope:
    str => string
    foo => function
    num => number

foo:
    obj => object
```

Identifier map

Experiment Setup

- Collected 33.5K unique JS files
 - Regression tests from repository of four major JS engines and Test262
 - PoCs of known CVEs
- Ran fuzzers against ChakraCore 1.4.1
- JS code testing unpatched bugs are not in our dataset!

Comparison to State-of-the-art Fuzzers

- For each fuzzer, ran 5 trials of a 72 hours-long fuzzing campaign
 - CodeAlchemist: A state-of-the-art semantics-aware JS fuzzer, NDSS'19
 - IFuzzer: An evolutionary JS fuzzer, ESORICS'16
 - jsfunfuzz: A JS fuzzer developed by Mozilla

Metric	Build -	# of Unique Crashes (Known CVEs)				
		Montage	CodeAlchemist	jsfunfuzz	IFuzzer	
Median	Release	23 (7)	15 (4)	27 (3)	4 (1)	
	Debug	49 (12)	26 (6)	27 (4)	6 (1)	

Comparison to State-of-the-art Fuzzers

The # of found unique crashes (known CVEs)

Effect of Language Models

- For each approach, ran 5 trials of a 72 hours-long fuzzing campaign
 - 1. A random fragment selection w/o model: The baseline of Montage
 - 2. A char/token-level RNN: A prevalent neural language model
 - 3. A Markov model: A **simple** language model

Metric	Build -	# of Unique Crashes (Known CVEs)			
		Montage	Random	ch/token RNN	Markov
Median	Release	23 (7)	12 (3)	1 (0)	19 (6)
	Debug	49 (12)	31 (7)	3 (0)	44 (11)

Effect of the LSTM model

The # of appended fragments to compose a new subtree

Effect of Resolving Reference Errors

For each approach, ran 5 trials of a 72 hours-long fuzzing campaign

Metric	Build —	# of Unique Crashes (Known CVEs)			
	Bullu	Montage	Montage w/o resolving step		
Median	Release	23 (7)	12 (4)		
	Debug	49 (12)	41 (9)		

The resolving step helps to find more bugs!

Montage still finds many bugs without the resolving step!

Finding Real-World Bugs

- We ran Montage on the four major JS engines for 1.5 months
 - Found **37 previous bugs** in total.
 - > 34 bugs including **two CVEs** from ChakraCore 1.11.7
 - One bug from V8 7.4.0 (beta)
 - > Two bugs including one CVE from JSC 2.23.3

Conclusion

- Conducted systematic **studies on JS engine vulnerabilities**
- Proposed the first NNLM-guided JS engine fuzzing tool
- Found **37 real-world bugs** from the latest JS engines

Question?

