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Abstract

Semantic communication (SeCom) systems aim to transmit task-relevant meaning rather than raw data, offering
enhanced efficiency for next-generation networks. However, their reliance on deep learning and generative mod-
els introduces new and largely unexplored security vulnerabilities. This paper examines four recent and represen-
tative cyber attacks that compromise the semantic layer of communication systems. These include embedding-
level adversarial perturbations, GAN-based semantic jamming, latent backdoor injection, and covert prompt in-
terception attacks. Together, they expose novel vulnerabilities inherent to generative AI-driven semantic commu-
nication. By analyzing the attack goals, mechanisms, and impact across different modalities, this study highlights
the urgent need to reassess security paradigms in AI-native communication environments.
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1. Introduction

Semantic communication (SeCom) represents a
fundamental shift in wireless communication, aim-
ing to transmit meaning rather than raw symbols. By
leveraging deep learning models and shared knowl-
edge bases, SeCom improves efficiency in bandwidth-
constrained and task-driven environments such as
autonomous driving, edge computing, and the Meta-
verse [2, 1]. The integration of generative artificial
intelligence (GenAI) models—including LLMs, diffu-
sion networks, and VAEs—further enhances seman-
tic fidelity, enabling multi-modal compression and
prompt-based content reconstruction [3]. However,
this reliance on AI-driven pipelines introduces new
attack surfaces at the semantic layer, which remain
insufficiently protected by traditional bit-level secu-
rity models [6, 4, 8]. Similar concerns arise in other
AI-enabled domains, such as intelligent transporta-
tion systems, where our group demonstrated a Time
Tampering Black-Box Genetic Algorithm (TTB-GA) at-
tack on digital twin models [7], and in energy harvest-
ing (EH) networks, where AI-based security frame-
works address threats like eavesdropping, data ma-
nipulation, and denial of service [5]. In this study,
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we focus exclusively on cyber attacks targeting the se-
mantic layer, reviewing four recent and representa-
tive works on adversarial perturbations, GAN-based
jamming, semantic backdoors, and covert prompt de-
tection to highlight the evolving threat landscape of
SeCom systems.

2. Attack Models in Semantic Communication

A white-box attack approach known as BERT ma-
nipulation of the embedding space is proposed by
Hoang et al. [9]. Gradient-based perturbations are ap-
plied to the input text to generate adversarial exam-
ples that distort semantic interpretation for the re-
ceiver while preserving syntactic structure. These as-
saults specifically aim at communal knowledge-based
semantic encoders, leading to considerable deteriora-
tion of semantic integrity. Experiments utilising the
SNLI dataset demonstrated a decline in BLEU score
from 0.72 to 0.46 under significant perturbation, but
adversarial training only partially restored accuracy.
The study highlights the vulnerability of semantic rep-
resentation spaces and the simplicity with which they
can be undermined.

Tang et al. [10] introduce a generative adversarial
network (GAN)-based semantic jamming framework,
where the attacker plays the role of a generator that
learns to craft meaningful perturbations, while the
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SeCom receiver acts as a discriminator. This setup
forms an adversarial game where the attacker’s goal
is to reduce semantic similarity without affecting sig-
nal detectability. The proposed attack strategy effec-
tively reduces BLEU scores by up to 40% under vary-
ing interference levels and assumes access to model
gradients. It demonstrates that intelligent jammers
trained via adversarial learning can significantly im-
pact semantic integrity in AI-native networks.

A hidden semantic backdoor attack (CSBA) de-
veloped for semantic communication in ICVs is in-
troduced by Xu et al. [11]. In contrast to conven-
tional input-level poisoning, CSBA embeds triggers
into the latent semantic space, deliberately elimi-
nating semantic attributes like road signs or people
while maintaining visual fidelity. The assault employs
Patchwise Latent Masking (PLaMa) and adversarial
fine-tuning to guarantee that semantic tampering is
undetectable. Assessment of the Cityscapes dataset
indicates an attack success rate above 80% with no
PSNR degradation, underscoring the stealth and ac-
curacy of backdoors in the semantic feature space.

Du et al. [12] explore covert communication attacks
in generative AI-aided semantic communication us-
ing multi-modal prompts. The attacker, modeled as a
passive “warden,” attempts to detect hidden seman-
tic transmissions by observing structured prompt de-
livery. The system employs a benign jammer to mask
transmission and uses a Generative Diffusion Model
(GDM) to jointly optimize transmission power, jam-
ming power, and diffusion steps for semantic recon-
struction. The attack exploits binary hypothesis test-
ing for detection, and experimental results show that
without careful optimization, the warden can success-
fully identify prompt transmissions. The study high-
lights a new attack vector specific to prompt-based
generative SeCom.

3. Conclusion

This research studied four recent cyberattacks that
focus on the semantic layer of AI-native communica-
tion systems. In contrast to conventional threats that
compromise signal quality or bit-level precision, these
assaults directly alter meaning by embedding pertur-
bations, generating adversarial noise, utilising latent
backdoors, and employing covert prompt detection.
Collectively, they unveil a varied and dynamic danger
landscape in semantic communication, wherein ad-
versaries might attain significant success rates with-
out activating traditional alerts. With the growing im-
plementation of SeCom systems in safety-critical and

multi-modal applications, there is an imperative ne-
cessity to establish security frameworks that are in-
trinsically cognisant of semantic vulnerabilities. This
work seeks to enhance the foundation by elucidating
the assault surface and encouraging subsequent de-
fence research.
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