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Abstract 
 

In the wearable sensor-based human activity recognition (HAR) domain, it is crucial to select an appropriate 
sampling rate at which the sensor data would be captured before being forwarded to a classification model. This 
sampling rate needs to be selected carefully since sampling rates that are too high can require high storage capacity, 
wide transmission bandwidth, and high computational cost, while low sampling rates can reduce the classification 
accuracy. This study presents a statistical analysis of how sampling rates affect the performance of HAR systems, 
especially those whose classification methods are deep learning algorithms. With seven different sampling rates 
ranging from 100 Hz down to 20 Hz; and three advanced deep learning algorithms: multi-layer perceptron (MLP), 
convolutional neural network (CNN), and bidirectional long short-term memory network (BiLSTM), a series of 
experiments are carried out on the PAMAP2 benchmark dataset to find out the most effective sampling rate and 
determine which deep learning algorithm is best suited in handling low sampling rates. 

 

 

I. Introduction  

Wearable sensor-based human activity recognition systems 
(HAR) have been growing rapidly over the past decade, 
thanks to the advancement of microelectromechanical systems. 
With the advantages of protecting user privacy, wearable 
sensor-based HAR has dominated over the camera-based HAR 
approach and become a crucial part of the healthcare domain 
[1]. It can help users track their activities and health 
conditions, thereby promoting a healthier lifestyle. Some 
abnormal activities, such as freezing of gait from Parkinson’s 
disease [2]. Various types of wearable sensors have been 
applied for the HAR systems to measure motions such as 
inertial measurement units (IMUs) and stretch sensors [3]. 
IMUs is one of the most broadly used sensors in HAR since 
they can capture human motion accurately. Therefore, this 
study will focus on the sampling rate of these sensors. The 
commonly used sampling rate of these sensors lies between 10 
Hz and 100 Hz [1]. 

In a HAR system, the sensors capture the state changes at 
a fixed sampling rate and send this information to the 
processing unit for data preprocessing (filtering, windowing), 
feature extraction, and activity classification. Using a high 
sampling rate can provide more details on the motion of the 
user’s body, thus helping to improve the accuracy of activity 
recognition. However, sampling sensor data at a high rate 
often requires consuming more energy, which is limited in 
wearable devices. Furthermore, to capture the data at a high 
frequency, high-quality sensors are often required, which can 
increase the production cost. On the other hand, using a low 
sampling rate can overcome the problems of power 

consumption, storage capacity, and data transmission loss. 
However, sensors with a low sampling rate might not be able 
to capture all the body movements. According to the Nyquist-
Shannon sampling theorem, the sampling rate should be 
greater than twice the Nyquist frequency for a lossless 
reconstruction of a particular signal. Therefore, some minor 
differences between activities that have high similarity, such 
as walking and walking downstairs or jumping and falling, can 
be neglected when using a low sampling rate, since they 
contain high-frequency components. In a nutshell, it is a trade-
off between accuracy and efficiency when deciding to use 
either a high sampling rate or a low sampling rate. Therefore, 
it is important to find out the most effective sampling rate. In 
this paper, we want to find out how different sampling rates 
can affect the deep learning-based HAR system, and which 
deep learning model can handle low sampling rates. 

II. Methodology  

All the experiments in this study are carried out on the 
PAMAP2 dataset [4]. The dataset contains 18 types of daily-
life, household, and sport activities performed by nine subjects 
wearing three IMUs and a heart rate monitor. All data are 
sampled at a rate of 100 Hz. The acceleration and angular 
velocity data from the three IMUs are used in this study. The 
sequential data of each IMU sensor can be expressed as Si = 
[ax, ay, az, gx, gy, gz]. The data is collected at an original 
sampling rate of 100 Hz. To generate the sensor data at 
sampling rates of 80, 60, 50, 40, 30, 20 Hz, we use an FIR anti-
aliasing low-pass filter and compensate the delay of the output 
signal. Finally, the sensor signals are split into fixed-length 
windows with a length of 2 seconds and an overlap of 50%. 



 

Three commonly used deep learning (DL) models are 
considered in this study, including convolutional neural 
network (CNN), bi-directional long short-term memory 
(BiLSTM), and multi-layer perceptron (MLP). The detailed 
architecture of these models is shown in Table 1. The CNN is 
constructed from a set of 2D convolutional layers with (3×3) 
kernels and pooling layers. In the BiLSTM model, we perform 
batch normalization on the raw sensor data as a regularization 
mechanism. Three BiLSTM layers with concatenation merge 
mode are then deployed for further feature extraction. The 
MLP model used in this study contains four hidden layers, 
each has 128 hidden nodes and a GELU activation function. 

 The recognition accuracies of the three deep learning 
algorithms with seven different sampling rate values are 
illustrated in Fig. 1. It can be easily seen that the CNN-based 
system gains the best performance out of the three deep 
learning models in all different sampling rates. It outperforms 
the other two models with big gaps of 3-4%. In the CNN-based 
system, it is surprising that even though the sampling rate is 
reduced fivefold from 100 Hz to 20 Hz, the system performance 
only decreases 1.6% from 97% to 95.35%. Therefore, CNN 
with 2D kernels can directly handle raw sensor data with low 
sampling rates without any additional steps. In contrast, the 
MLP-based HAR system has better performance at low 
sampling rates than high sampling rates, as it obtains the 
highest accuracy at Fs = 20, 30 Hz, and the lowest accuracy 
at a sampling rate of 60 Hz. Similarly, although the BiLSTM 
model gains the highest accuracy at Fs =100 Hz, there is not 
much difference compared to other sampling rate values. 
These results show that a higher sampling rate does not 
always provide higher accuracy, especially when the deep 
learning model is applied directly to the raw sensor signal. 
One possible reason is that long input sequences resulting from 
a high sampling rate can hamper the model in extracting and 
maintaining important features. 

III. Conclusion 
In this paper, experiments on different sensor sampling rates 

and different deep learning algorithms are carried out to find 
out the impact of sampling rate on DL-based HAR system 
performance. Experimental results from three deep learning 
algorithms and seven sampling rate values show that CNN is 
the best model for handling raw sensor data with low sampling 

frequencies. One interesting finding is that higher sampling 
rates with more detailed sensor signals do not always provide 
better classification results due to some limitations in feature 
extraction. 
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 Table 1. Detailed Architecture of three deep learning-based HAR models.  

 CNN BiLSTM MLP  

 Conv(3×3, 32, ‘relu’, same) BatchNorm() Dense(units=128, ‘gelu’)  
 Conv(3×3, 32, ‘relu’, same) BiLSTM(units=128, ‘concat’) Dense(units=128, ‘gelu’)  
 MaxPool(2,1) BiLSTM(units=128, ‘concat’) Dense(units=128, ‘gelu’)  
 Conv(3×3, 32, ‘relu’, same) BiLSTM(units=128, ‘concat’) Dense(units=128, ‘gelu’)  
 Conv(3×3, 32, ‘relu’, same) Dense(units=18, ‘softmax’) Flatten()  
 MaxPool(2,2)    
 Conv(3×3, 32, ‘relu’, same)    
 Conv(3×3, 32, ‘relu’, same)    
 GlobalAveragePool()    
 Dense(units=18, ‘softmax’)    
     

 
Fig 1. Performance comparison of three deep learning-based HAR 

systems on different sampling rates. 
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