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Abstract

In the wearable sensor-based human activity recognition (HAR) domain, it is crucial to select an appropriate

sampling rate at which the sensor data would be captured before being forwarded to a classification model. This

sampling rate needs to be selected carefully since sampling rates that are too high can require high storage capacity,

wide transmission bandwidth, and high computational cost, while low sampling rates can reduce the classification

accuracy. This study presents a statistical analysis of how sampling rates affect the performance of HAR systems,

especially those whose classification methods are deep learning algorithms. With seven different sampling rates

ranging from 100 Hz down to 20 Hz; and three advanced deep learning algorithms: multi-layer perceptron (MLP),

convolutional neural network (CNN), and bidirectional long short-term memory network (BiLSTM), a series of

experiments are carried out on the PAMAP2 benchmark dataset to find out the most effective sampling rate and

determine which deep learning algorithm is best suited in handling low sampling rates.

I. Introduction

Wearable sensor-based human activity recognition systems
(HAR) have been growing rapidly over the past decade,

thanks to the advancement of microelectromechanical systems.

With the advantages of protecting user privacy, wearable
sensor-based HAR has dominated over the camera-based HAR
approach and become a crucial part of the healthcare domain
[1]. It can help users track their activities and health
conditions, thereby promoting a healthier lifestyle. Some
abnormal activities, such as freezing of gait from Parkinson’s
disease [2]. Various types of wearable sensors have been
applied for the HAR systems to measure motions such as
inertial measurement units (IMUs) and stretch sensors [3].
IMUs is one of the most broadly used sensors in HAR since
they can capture human motion accurately. Therefore, this
study will focus on the sampling rate of these sensors. The
commonly used sampling rate of these sensors lies between 10
Hz and 100 Hz [1].

In a HAR system, the sensors capture the state changes at
a fixed sampling rate and send this information to the
processing unit for data preprocessing (filtering, windowing),
feature extraction, and activity classification. Using a high
sampling rate can provide more details on the motion of the
user’s body, thus helping to improve the accuracy of activity
recognition. However, sampling sensor data at a high rate
often requires consuming more energy, which is limited in
wearable devices. Furthermore, to capture the data at a high
frequency, high-quality sensors are often required, which can
increase the production cost. On the other hand, using a low
sampling rate can overcome the problems of power

consumption, storage capacity, and data transmission loss.
However, sensors with a low sampling rate might not be able
to capture all the body movements. According to the Nyquist-
Shannon sampling theorem, the sampling rate should be
greater than twice the Nyquist frequency for a lossless
reconstruction of a particular signal. Therefore, some minor
differences between activities that have high similarity, such
as walking and walking downstairs or jumping and falling, can
be neglected when using a low sampling rate, since they
contain high-frequency components. In a nutshell, it is a trade-
off between accuracy and efficiency when deciding to use
either a high sampling rate or a low sampling rate. Therefore,
it is important to find out the most effective sampling rate. In
this paper, we want to find out how different sampling rates
can affect the deep learning-based HAR system, and which
deep learning model can handle low sampling rates.

II. Methodology

All the experiments in this study are carried out on the
PAMAP?2 dataset [4]. The dataset contains 18 types of daily-
life, household, and sport activities performed by nine subjects
wearing three IMUs and a heart rate monitor. All data are
sampled at a rate of 100 Hz. The acceleration and angular
velocity data from the three IMUs are used in this study. The
sequential data of each IMU sensor can be expressed as Si =
[a,, a,, a., g, gy, gJ The data is collected at an original
sampling rate of 100 Hz. To generate the sensor data at
sampling rates of 80, 60, 50, 40, 30, 20 Hz, we use an FIR anti-
aliasing low-pass filter and compensate the delay of the output
signal. Finally, the sensor signals are split into fixed-length
windows with a length of 2 seconds and an overlap of 50%.



Table 1. Detailed Architecture of three deep learning-based HAR models.

CNN BiLSTM MLP
Conv(3x3, 32, ‘relu’, same) BatchNorm() Dense(units=128, ‘gelu’)
Conv(3x3, 32, ‘relu’, same) BiLSTM(units=128, ‘concat’) Dense(units=128, ‘gelu’)
MaxPool(2,1) BiLSTM(units=128, ‘concat’) Dense(units=128, ‘gelu’)
Conv(3x3, 32, ‘relu’, same) BiLSTM (units=128, ‘concat’) Dense(units=128, ‘gelu’)

Conv(3x3, 32, ‘relu’, same) Dense(units=18, ‘softmax’) Flatten()

MaxPool(2,2)

Conv(3x3, 32, ‘relu’, same)

Conv(3x3, 32, ‘relu’, same)

GlobalAveragePool()

Dense(units=18, ‘softmax’)
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MLP model used in this study contains four hidden layers,
each has 128 hidden nodes and a GELU activation function.

The recognition accuracies of the three deep learning
algorithms with seven different sampling rate values are
illustrated in Fig. 1. It can be easily seen that the CNN-based
system gains the best performance out of the three deep
learning models in all different sampling rates. It outperforms
the other two models with big gaps of 3-4%. In the CNN-based
system, it is surprising that even though the sampling rate is
reduced fivefold from 100 Hz to 20 Hz, the system performance
only decreases 1.6% from 97% to 95.35%. Therefore, CNN
with 2D kernels can directly handle raw sensor data with low
sampling rates without any additional steps. In contrast, the
MLP-based HAR system has better performance at low
sampling rates than high sampling rates, as it obtains the
highest accuracy at Fy= 20, 30 Hz, and the lowest accuracy
at a sampling rate of 60 Hz. Similarly, although the BiLSTM
model gains the highest accuracy at Fs =100 Hz, there is not
much difference compared to other sampling rate values.
These results show that a higher sampling rate does not
always provide higher accuracy, especially when the deep
learning model is applied directly to the raw sensor signal.
One possible reason is that long input sequences resulting from
a high sampling rate can hamper the model in extracting and
maintaining important features.

III. Conclusion

In this paper, experiments on different sensor sampling rates
and different deep learning algorithms are carried out to find
out the impact of sampling rate on DL-based HAR system
performance. Experimental results from three deep learning
algorithms and seven sampling rate values show that CNN is
the best model for handling raw sensor data with low sampling
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Fig 1. Performance comparison of three deep learning-based HAR

systems on different sampling rates.

frequencies. One interesting finding is that higher sampling
rates with more detailed sensor signals do not always provide
better classification results due to some limitations in feature
extraction.
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