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Abstract

Large Language Models (LLMs) have shown performance
gains in code generation tasks via Retrieval Augmented
Generation (RAG). However, these methods, known as Code-
RAG, implicitly rely on retrieving ground-truth code, so their gain
mostly comes from this. This reflects the issue of the Code-RAG
pipeline itself, which has not been designed for reusability.
When the gold snippet is absent, LLMs easily fail to leverage the
retrieved codes. To overcome this, we propose Chain-of-
Function (CoF): treat code as a composition of reusable
functions. We decompose the retrieval pool into individual
functions and encode them as pseudocode for a modality match
between code and problem description. At inference, we
generate a pseudocode plan based on the problem description,
decompose it into required functions, and retrieve each
independently, enabling function reuse without a gold snippet.
On LiveCodeBench, our method achieves up to a +2% pass rate
over PERC and improves the reuse rate, the number of retrieved
codes referred on generated code increases to 2.3% from 0.69%,
with shorter retrieved context compared to PERC.

I . Introduction

Retrieval-augmented generation (RAG) for code aims to
improve large language models (LLMs) by supplying relevant
external code during inference. While effective in some cases,
recent benchmarks such as CodeRAG-Bench show that
substantial gains occur mainly when the retrieved snippet is a
gold snippet, a complete, ground-truth solution. Without such a
snippet, models often ignore the retrieved content.

A key challenge highlighted by recent empirical studies is the
low reusability of retrieved code [1,2]. Current pipelines index
code at coarse granularity, such as entire code file or large code
blocks, collapsing multiple uncrelated functions into a single
emberdding. Even wehn retrievers find partially relevant
snippets, models often struggle to disentagle useful components
from the surrounding irrelevant code blocks. Real codebases are
compositional: a solution can be expressedas C = f; o f,0 ... 0
fn » where each is a distinct, reusable function. When retrieval
ignores this chain-of-function structure, relevant functions are
buried in noise, making partial reuse difficult.

Our chain-of-function retrieval framework redefines the
retrieval pool by decomposing code into function-level units,
which are then represented as pseudocode and indexed
independently. This enables partial reuse without relying on a
gold snippet, improving both accuracy and reuse rate. The query
process mirrors this decomposition: we generate a high-level
pseudocode plan for the problem, break it down into functional
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steps, and use each step as a precise query to retrieve a
corresponding function. These retrieved functions are then
aggregated and supplied as context to an LLM to generate the
final solution.

Il. Related Works

Prior work in Code-RAG has advanced along two primary axes:
retrieval indexing and query formation. Initial approaches to
indexing typically treated entire files or large code blocks as single
documents for retrieval [3], which often dilutes the semantic
signal of individual functions. Recognizing this limitation, more
recent work has explored finer-grained indexing strategies, such
as retrieving at the function level [4] or leveraging structured
representations like programming knowledge graphs [5].

Similarly, query formation techniques have grown more
sophisticated, moving from simple similarity search [3] toward
structured approaches like PERC (plan-as-query) [6] or iterative
refinement [7,8]. However, despite these parallel advancements,
a fundamental disconnect persists: the granularity of the
retrieved items often fails to match the compositional nature of
the code generation task. Our work directly addresses this gap by
synchronizing both the retrieval and query processes at the
function level, ensuring that each piece of retrieved information
is a targeted, reusable component for the final code assembly.

IT. Methodology

A. Problem Formulation

In a standard Code-RAG setting, the goal is to generate a
solution code C, for a given problem description p, using a set of
retrieved code contexts E. The generation is conditioned on a
prompt that includes the task query (g) and the retrieved
examples: ¢g = LLM(p, E; Prompt) The retrieved contexts E
are selected from a large retrieval pool D by scoring each
candidate ¢ € D based on its similarity to a query q:

E = Topcepsim(i(q), ¥(c))

where 1 is an encoding function. This formulation highlights
the dependency on retrieving a highly relevant code snippetc.

B. Stage 1: Function-Level Retrieval Pool Construction

Our approach begins by reformulating the retrieval pool D.
Instead of indexing entire code solutions, we use an LLM to
refactor each code snippet (c) into a set of single-responsibility
functions { f, f>,..., fn } - Each function is then converted into
natural language pseudocode. This process builds a retrieval pool
that focuses on the functional essence of the code rather than its
syntax, enhancing retrieval accuracy.



B. Stage 2: Plan-Guided Function Induction and Retrieval

At inference, we first generate a high-level pseudocode plan
for the given problem description (p ). This plan is then
decomposed into a list of required functions, {g;, g>, ..., gn}- For
each required function, we generate a detailed pseudocode
description, which serves as a fine-grained query. Unlike PERC,
that uses the entire plan as one query, our function-specific
queries allow for the precise retrieval of relevant, reusable
components.

IV. EXPERIMENTS AND RESULTS

A. Experimental Setup
e Dataset: LiveCodeBench [7] v5 (880 problems)
with the programming-solutions corpus from
CodeRAG-bench [8].

e Models: nomic-embed-text for retrieval; llama3.1-
8B, 70B [9], and gpt-40-mini [10] for generation.

e Metric: Pass@1, which measures the percentage
of test cases passed by the generated solution.

B. Results

Table 1 shows that CoF consistently improves the
Pass@1 score by +1.6% to 2% over the state-of-the-art
PERC model across various LLMs. This indicates that CoF
retrieves more relevant functions that are useful for solution
generation.

IIan'é%S.l- Ilar?gs.l- gpt-4o-mini
No Retrieval 23.64 36.05 52.61
Z;‘_)gﬁ:‘y' 22.84 36.7 53.52
PERC [6] 24.2 35.57 52.84
CoF (ours) 25.8 37.62 54.02

Table 1: Pass@1 score of LiveCodeBench [3] problem with
programming-solution corpus from CodeRAG-Bench [2].

C. Analysis

Table 2 highlights CoF's superior reusability. CoF reused 2.3%
of retrieved functions for solving 37 questions, compared to only
0.69% for PERC for 11 questions. As CoF retrieves more
functions while shortening the length of the retrieved context,
we can validate that the retrieved context from CoF enables
LLMs to leverage the context more effectively.

PERC [6] CoF (ours)
Average Number
of codes retrieved 3 4.71
Average length of 857 56 67783
retrieved codes . .
Number of o ;
retrieved codes 0.69% 2.3%
referred (11 questions) | (37 questions)

Table 2: Reusability Analysis between retrieved codes and
generated codes.

V. Conclusion

We addressed the limitations of Code-RAG by decomposing
the retrieval pool into pure, single-responsibility functions and
aligning queries via pseudocode decomposition. Our CoF
approach significantly enhances retrieval precision and solves
more problems on a Pass@1 basis. Future work includes
exploring the dynamic assembly of retrieved units via an agentic
approach to close remaining performance gaps.
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