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Abstract 

Large Language Models (LLMs) have shown performance 

gains in code generation tasks via Retrieval Augmented 

Generation (RAG). However, these methods, known as Code-

RAG, implicitly rely on retrieving ground-truth code, so their gain 

mostly comes from this. This reflects the issue of the Code-RAG 

pipeline itself, which has not been designed for reusability. 

When the gold snippet is absent, LLMs easily fail to leverage the 

retrieved codes. To overcome this, we propose Chain-of-

Function (CoF): treat code as a composition of reusable 

functions. We decompose the retrieval pool into individual 

functions and encode them as pseudocode for a modality match 

between code and problem description. At inference, we 

generate a pseudocode plan based on the problem description, 

decompose it into required functions, and retrieve each 

independently, enabling function reuse without a gold snippet. 

On LiveCodeBench, our method achieves up to a +2% pass rate 

over PERC and improves the reuse rate, the number of retrieved 

codes referred on generated code increases to 2.3% from 0.69%, 

with shorter retrieved context compared to PERC.  

Ⅰ. Introduction  

Retrieval-augmented generation (RAG) for code aims to 

improve large language models (LLMs) by supplying relevant 

external code during inference. While effective in some cases, 

recent benchmarks such as CodeRAG-Bench show that 

substantial gains occur mainly when the retrieved snippet is a 

gold snippet, a complete, ground-truth solution. Without such a 

snippet, models often ignore the retrieved content. 

A key challenge highlighted by recent empirical studies is the 

low reusability of retrieved code [1,2]. Current pipelines index 

code at coarse granularity, such as entire code file or large code 

blocks, collapsing multiple uncrelated functions into a single 

emberdding. Even wehn retrievers find partially relevant 

snippets, models often struggle to disentagle useful components 

from the surrounding irrelevant code blocks. Real codebases are 

compositional: a solution can be expressed as 𝐶 = 𝑓1 ∘ 𝑓2 ∘ … ∘

𝑓𝑛  , where each is a distinct, reusable function. When retrieval 

ignores this chain-of-function structure, relevant functions are 

buried in noise, making partial reuse difficult. 

Our chain-of-function retrieval framework redefines the 

retrieval pool by decomposing code into function-level units, 

which are then represented as pseudocode and indexed 

independently. This enables partial reuse without relying on a 

gold snippet, improving both accuracy and reuse rate. The query 

process mirrors this decomposition: we generate a high-level 

pseudocode plan for the problem, break it down into functional 

steps, and use each step as a precise query to retrieve a 

corresponding function. These retrieved functions are then 

aggregated and supplied as context to an LLM to generate the 

final solution. 

II. Related Works 

Prior work in Code-RAG has advanced along two primary axes: 

retrieval indexing and query formation. Initial approaches to 

indexing typically treated entire files or large code blocks as single 

documents for retrieval [3], which often dilutes the semantic 

signal of individual functions. Recognizing this limitation, more 

recent work has explored finer-grained indexing strategies, such 

as retrieving at the function level [4] or leveraging structured 

representations like programming knowledge graphs [5]. 

Similarly, query formation techniques have grown more 

sophisticated, moving from simple similarity search [3] toward 

structured approaches like PERC (plan-as-query) [6] or iterative 

refinement [7,8]. However, despite these parallel advancements, 

a fundamental disconnect persists: the granularity of the 

retrieved items often fails to match the compositional nature of 

the code generation task. Our work directly addresses this gap by 

synchronizing both the retrieval and query processes at the 

function level, ensuring that each piece of retrieved information 

is a targeted, reusable component for the final code assembly. 

Ⅲ. Methodology 

A. Problem Formulation 

In a standard Code-RAG setting, the goal is to generate a 

solution code 𝐶𝑠 for a given problem description 𝑝, using a set of 

retrieved code contexts E. The generation is conditioned on a 

prompt that includes the task query ( 𝑞) and the retrieved 

examples: 𝑐𝑠  =  𝐿𝐿𝑀(𝑝, 𝐸;  𝑃𝑟𝑜𝑚𝑝𝑡) The retrieved contexts E 

are selected from a large retrieval pool 𝐷  by scoring each 

candidate 𝑐 ∈ 𝐷 based on its similarity to a query 𝑞: 

𝐸 = 𝑇𝑜𝑝𝑐∈𝐷𝑠𝑖𝑚(𝜓(𝑞), 𝜓(𝑐)) 

where 𝜓 is an encoding function. This formulation highlights 

the dependency on retrieving a highly relevant code snippet𝑐. 

B. Stage 1: Function-Level Retrieval Pool Construction 

Our approach begins by reformulating the retrieval pool 𝐷 . 

Instead of indexing entire code solutions, we use an LLM to 

refactor each code snippet (𝑐) into a set of single-responsibility 

functions { 𝑓1, 𝑓2, . . . , 𝑓𝑛  } . Each function is then converted into 

natural language pseudocode. This process builds a retrieval pool 

that focuses on the functional essence of the code rather than its 

syntax, enhancing retrieval accuracy. 



 

 

B. Stage 2: Plan-Guided Function Induction and Retrieval 

At inference, we first generate a high-level pseudocode plan 

for the given problem description ( 𝑝 ). This plan is then 

decomposed into a list of required functions,  {𝑔1, 𝑔2, … , 𝑔𝑛}. For 

each required function, we generate a detailed pseudocode 

description, which serves as a fine-grained query. Unlike PERC, 

that uses the entire plan as one query, our function-specific 

queries allow for the precise retrieval of relevant, reusable 

components. 

IV. EXPERIMENTS AND RESULTS 

A. Experimental Setup 

● Dataset: LiveCodeBench [7] v5 (880 problems) 

with the programming-solutions corpus from 

CodeRAG-bench [8]. 

● Models: nomic-embed-text for retrieval; llama3.1-

8B, 70B [9], and gpt-4o-mini [10] for generation. 

● Metric: Pass@1, which measures the percentage 

of test cases passed by the generated solution. 

B. Results 

Table 1 shows that CoF consistently improves the 

Pass@1 score by +1.6% to 2% over the state-of-the-art 

PERC model across various LLMs. This indicates that CoF 

retrieves more relevant functions that are useful for solution 

generation. 

 
llama3.1-

8b 
llama3.1-

70b 
gpt-4o-mini 

No Retrieval 23.64 36.05 52.61 

Problem- 
as-query 

22.84 36.7 53.52 

PERC [6] 24.2 35.57 52.84 

CoF (ours) 25.8 37.62 54.02 

Table 1: Pass@1 score of LiveCodeBench [3] problem with 

programming-solution corpus from CodeRAG-Bench [2]. 

C. Analysis 

Table 2 highlights CoF's superior reusability. CoF reused 2.3% 

of retrieved functions for solving 37 questions, compared to only 

0.69% for PERC for 11 questions. As CoF retrieves more 

functions while shortening the length of the retrieved context, 

we can validate that the retrieved context from CoF enables 

LLMs to leverage the context more effectively. 

 
PERC [6] CoF (ours) 

Average Number 
of codes retrieved 

3 4.71 

Average length of 
retrieved codes 

857.56 677.83 

Number of 
retrieved codes 

referred 

0.69%  
(11 questions) 

2.3%  
(37 questions) 

Table 2: Reusability Analysis between retrieved codes and 

generated codes. 

V. Conclusion 

We addressed the limitations of Code-RAG by decomposing 

the retrieval pool into pure, single-responsibility functions and 

aligning queries via pseudocode decomposition. Our CoF 

approach significantly enhances retrieval precision and solves 

more problems on a Pass@1 basis. Future work includes 

exploring the dynamic assembly of retrieved units via an agentic 

approach to close remaining performance gaps. 
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