

* Corresponding author

Chain-of-Function: Inducing Sequential Plans Over Decomposed Code Indexes for
Code Generation

Jongyoon Kim, Seung-won Hwang*
Seoul National University, Seoul, Republic of Korea

{ john.jongyoon.kim, seungwonh }@snu.ac.kr

Abstract

Large Language Models (LLMs) have shown performance

gains in code generation tasks via Retrieval Augmented

Generation (RAG). However, these methods, known as Code-

RAG, implicitly rely on retrieving ground-truth code, so their gain

mostly comes from this. This reflects the issue of the Code-RAG

pipeline itself, which has not been designed for reusability.

When the gold snippet is absent, LLMs easily fail to leverage the

retrieved codes. To overcome this, we propose Chain-of-

Function (CoF): treat code as a composition of reusable

functions. We decompose the retrieval pool into individual

functions and encode them as pseudocode for a modality match

between code and problem description. At inference, we

generate a pseudocode plan based on the problem description,

decompose it into required functions, and retrieve each

independently, enabling function reuse without a gold snippet.

On LiveCodeBench, our method achieves up to a +2% pass rate

over PERC and improves the reuse rate, the number of retrieved

codes referred on generated code increases to 2.3% from 0.69%,

with shorter retrieved context compared to PERC.

Ⅰ. Introduction

Retrieval-augmented generation (RAG) for code aims to

improve large language models (LLMs) by supplying relevant

external code during inference. While effective in some cases,

recent benchmarks such as CodeRAG-Bench show that

substantial gains occur mainly when the retrieved snippet is a

gold snippet, a complete, ground-truth solution. Without such a

snippet, models often ignore the retrieved content.

A key challenge highlighted by recent empirical studies is the

low reusability of retrieved code [1,2]. Current pipelines index

code at coarse granularity, such as entire code file or large code

blocks, collapsing multiple uncrelated functions into a single

emberdding. Even wehn retrievers find partially relevant

snippets, models often struggle to disentagle useful components

from the surrounding irrelevant code blocks. Real codebases are

compositional: a solution can be expressed as 𝐶 = 𝑓1 ∘ 𝑓2 ∘ … ∘

𝑓𝑛 , where each is a distinct, reusable function. When retrieval

ignores this chain-of-function structure, relevant functions are

buried in noise, making partial reuse difficult.

Our chain-of-function retrieval framework redefines the

retrieval pool by decomposing code into function-level units,

which are then represented as pseudocode and indexed

independently. This enables partial reuse without relying on a

gold snippet, improving both accuracy and reuse rate. The query

process mirrors this decomposition: we generate a high-level

pseudocode plan for the problem, break it down into functional

steps, and use each step as a precise query to retrieve a

corresponding function. These retrieved functions are then

aggregated and supplied as context to an LLM to generate the

final solution.

II. Related Works

Prior work in Code-RAG has advanced along two primary axes:

retrieval indexing and query formation. Initial approaches to

indexing typically treated entire files or large code blocks as single

documents for retrieval [3], which often dilutes the semantic

signal of individual functions. Recognizing this limitation, more

recent work has explored finer-grained indexing strategies, such

as retrieving at the function level [4] or leveraging structured

representations like programming knowledge graphs [5].

Similarly, query formation techniques have grown more

sophisticated, moving from simple similarity search [3] toward

structured approaches like PERC (plan-as-query) [6] or iterative

refinement [7,8]. However, despite these parallel advancements,

a fundamental disconnect persists: the granularity of the

retrieved items often fails to match the compositional nature of

the code generation task. Our work directly addresses this gap by

synchronizing both the retrieval and query processes at the

function level, ensuring that each piece of retrieved information

is a targeted, reusable component for the final code assembly.

Ⅲ. Methodology

A. Problem Formulation

In a standard Code-RAG setting, the goal is to generate a

solution code 𝐶𝑠 for a given problem description 𝑝, using a set of

retrieved code contexts E. The generation is conditioned on a

prompt that includes the task query (𝑞) and the retrieved

examples: 𝑐𝑠 = 𝐿𝐿𝑀(𝑝, 𝐸; 𝑃𝑟𝑜𝑚𝑝𝑡) The retrieved contexts E

are selected from a large retrieval pool 𝐷 by scoring each

candidate 𝑐 ∈ 𝐷 based on its similarity to a query 𝑞:

𝐸 = 𝑇𝑜𝑝𝑐∈𝐷𝑠𝑖𝑚(𝜓(𝑞), 𝜓(𝑐))

where 𝜓 is an encoding function. This formulation highlights

the dependency on retrieving a highly relevant code snippet𝑐.

B. Stage 1: Function-Level Retrieval Pool Construction

Our approach begins by reformulating the retrieval pool 𝐷 .

Instead of indexing entire code solutions, we use an LLM to

refactor each code snippet (𝑐) into a set of single-responsibility

functions { 𝑓1, 𝑓2, . . . , 𝑓𝑛 } . Each function is then converted into

natural language pseudocode. This process builds a retrieval pool

that focuses on the functional essence of the code rather than its

syntax, enhancing retrieval accuracy.

B. Stage 2: Plan-Guided Function Induction and Retrieval

At inference, we first generate a high-level pseudocode plan

for the given problem description (𝑝). This plan is then

decomposed into a list of required functions, {𝑔1, 𝑔2, … , 𝑔𝑛}. For

each required function, we generate a detailed pseudocode

description, which serves as a fine-grained query. Unlike PERC,

that uses the entire plan as one query, our function-specific

queries allow for the precise retrieval of relevant, reusable

components.

IV. EXPERIMENTS AND RESULTS

A. Experimental Setup

● Dataset: LiveCodeBench [7] v5 (880 problems)

with the programming-solutions corpus from

CodeRAG-bench [8].

● Models: nomic-embed-text for retrieval; llama3.1-

8B, 70B [9], and gpt-4o-mini [10] for generation.

● Metric: Pass@1, which measures the percentage

of test cases passed by the generated solution.

B. Results

Table 1 shows that CoF consistently improves the

Pass@1 score by +1.6% to 2% over the state-of-the-art

PERC model across various LLMs. This indicates that CoF

retrieves more relevant functions that are useful for solution

generation.

llama3.1-

8b
llama3.1-

70b
gpt-4o-mini

No Retrieval 23.64 36.05 52.61

Problem-
as-query

22.84 36.7 53.52

PERC [6] 24.2 35.57 52.84

CoF (ours) 25.8 37.62 54.02

Table 1: Pass@1 score of LiveCodeBench [3] problem with

programming-solution corpus from CodeRAG-Bench [2].

C. Analysis

Table 2 highlights CoF's superior reusability. CoF reused 2.3%

of retrieved functions for solving 37 questions, compared to only

0.69% for PERC for 11 questions. As CoF retrieves more

functions while shortening the length of the retrieved context,

we can validate that the retrieved context from CoF enables

LLMs to leverage the context more effectively.

PERC [6] CoF (ours)

Average Number
of codes retrieved

3 4.71

Average length of
retrieved codes

857.56 677.83

Number of
retrieved codes

referred

0.69%
(11 questions)

2.3%
(37 questions)

Table 2: Reusability Analysis between retrieved codes and

generated codes.

V. Conclusion

We addressed the limitations of Code-RAG by decomposing

the retrieval pool into pure, single-responsibility functions and

aligning queries via pseudocode decomposition. Our CoF

approach significantly enhances retrieval precision and solves

more problems on a Pass@1 basis. Future work includes

exploring the dynamic assembly of retrieved units via an agentic

approach to close remaining performance gaps.

ACKNOWLEDGMENT

This work was partly supported by Institute of Information &

communications Technology Planning & Evaluation (IITP) grant

funded by the Korea government(MSIT) [NO.RS-2021-II211343,

Artificial Intelligence Graduate School Program (Seoul National

University)] and also supported by Electronics and

Telecommunications Research Institute (ETRI) grant funded by

ICT R&D program of MSIT/IITP (2022-0-00995, Automated

reliable source code generation from natural language

descriptions).

References

[1] W. Gu et al., "What to Retrieve for Effective Retrieval-

Augmented Code Generation? An Empirical Study and Beyond,"

arXiv preprint arXiv:2503.20589, 2025.

[2] Z. Z. Wang et al., "Coderag-Bench: Can Retrieval Augment

Code Generation?," arXiv preprint arXiv:2406.14497, 2024.

[3] F. Zhang et al., "Repocoder: Repository-Level Code

Completion Through Iterative Retrieval and Generation," arXiv

preprint arXiv:2303.12570, 2023.

[4] Y. Ding et al., "Function-Level Code Retrieval with Multi-

Faceted Representations," in Proc. 45th Int. Conf. Softw. Eng.

(ICSE), 2023.

[5] I. Saberi and F. Fard, "Context-Augmented Code Generation

Using Programming Knowledge Graphs," arXiv preprint

arXiv:2410.18251, 2024.

[6] J. Yoo, H. Han, Y. Lee, J. Kim, and S.-W. Hwang, "PERC: Plan-

As-Query Example Retrieval for Underrepresented Code

Generation," arXiv preprint arXiv:2412.12447, 2024.

[7] D. Zan et al., "When Language Models Meet Code: A Survey

on Retrieval-Augmented Code Generation," arXiv preprint

arXiv:2312.17581, 2023.

[8] W. Gu et al., "What to Retrieve for Effective Retrieval-

Augmented Code Generation? An Empirical Study and Beyond,"

arXiv preprint arXiv:2503.20589, 2025.

[7] N. Jain et al., "Livecodebench: Holistic and Contamination

Free Evaluation of Large Language Models for Code," arXiv

preprint arXiv:2403.07974, 2024.

[9] AI@Meta, "Llama 3 Model Card," 2024. [Online]. Available:

https://huggingface.co/docs/hub/en/model-cards

[10] J. Achiam et al., "GPT-4 Technical Report," arXiv preprint

arXiv:2303.08774, 2023.

https://huggingface.co/docs/hub/en/model-cards
https://huggingface.co/docs/hub/en/model-cards
https://huggingface.co/docs/hub/en/model-cards

