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Abstract—Deploying deep learning models on smart, low-
resource devices for human activity recognition (HAR) requires
efficient approaches due to limited computational power and
memory. Reducing precision during training and inference can
help achieve these efficiency goals. This paper evaluates the
efficiency and robustness of binarized neural networks (BNNs)
compared to a baseline deep learning model of VGG16 using the
University of Glasgow radar dataset for HAR. Both approaches
show similar robustness and performance in terms of accuracy,
precision, recall, F1 Score, and loss. However, the BNNs has a
significantly smaller model size and fewer parameters, making
it a more suitable choice for HAR applications where memory
and energy consumption are critical. The memory usage results
of the BNNs in terms of the number of parameters and model
size catalyze the tradeoff between accuracy and complexity.

Index Terms—activity recognition, Doppler, binarize, radar

I. INTRODUCTION

Human activity recognition (HAR) which is a form of
assistive living (AL) has grown into an instrumental tool
due to the growing population of the elderly, the prevalence
of non-communicable diseases, and the shortage of medical
practitioners in most parts of the world [1], [2].

Fig. 1. The Equivalent (XNOR) gate bit wise operation used to execute
computations in BNNs.

Following the ImageNet challenge of 2012 that brought the
AlexNet architecture [5], several deep learning models that
are robust on image data were proposed. One of them was

the VGG16 [6] which we use as a baseline in this paper. It
should be noted that, though the imagenet models exhibit a
commendable and robust performance they are usually highly
parameterized and require large memory size during both
training and inference. Though recent highly parameterized
models [7] perform well, it is challenging to deploy them in the
low-resource devices which are the most comfortable devices
to be used by the elderly, patients, and other HAR device
users. In [8], the authors proposed knowledge distillation as a
technique for model compression and model adaptation. Kung
et al. [9] describes some approaches to reduce memory and
power usage. Some of these are the use of a 4-bit codebook
for weight parameters, data pruning, data compression, and the
use of BNNs. Among these, BNNs can use binary weights and
activations during training and inference [10]. BNNs have a
unique advantage over conventional deep learning networks in
terms of computational efficiency and memory usage which
further makes them a good candidate for low-resource HAR
devices. In BNNs, multiplications are replaced with bitwise
operations (e.g., XNOR and bit count) shown in Fig. 1. These
computations are faster than floating-point multiplications used
in conventional networks [11]. This makes BNNs highly suit-
able for battery-powered devices and other low-power appli-
cations like the ones in which HAR is deployed. We utilize
the straight-through estimator (STE) algorithm to alleviate this
challenge. The STE passes the gradient without any change to
the preceding layer. This implies that though the BNNs utilize
binary activations and weights, the weight update is performed
on real-valued floating points which are the original weights.

In this paper, we carry out experiments on radar HAR data
using the VGG16 deep learning architectures as a baseline for
performance comparison with the BNNs model. We report on
the performance of these models in terms of accuracy, loss,
number of parameters, and memory size.

II. METHODS

Dataset and Feature Extraction: To evaluate the perfor-
mance of the baseline and BNNs models on HAR, we used
the University of Glasgow activity radar dataset which was col-



lected using an off-the-shelf frequency modulated continuous
wave (FMCW) radar.

TABLE I
COMPARATIVE RESULTS OF THE BASELINE AND THE BNNS MODELS

Model A(%) P(%) R(%) F1(%) L P (m) M (KB)

Baseline 94.59 94.59 94.59 94.59 0.1482 23 277,450
BNNs 92.59 94.801 88.32 91.12 0.4420 10 715

TABLE II
THE CLASSIFICATION REPORT OF THE BNNS MODEL

Class Precision Recall F1-score Support

walking 0.97 1.00 0.99 70
sitting 0.95 0.98 0.96 54
standing 0.98 0.95 0.97 66
picking 0.85 0.85 0.85 61
drinking 0.83 0.85 0.84 65
Falling 1.00 0.91 0.96 35

accuracy 0.93 351
macro avg 0.93 0.92 0.93 351
weighted avg 0.93 0.93 0.93 351

Experiments: We used the VGG16 pre-trained model on
the radar data as the baseline model. We used the TensorFlow
framework and the Larq library to design a VGG16 baseline
model and BNNs model. The model consists of quantized
convolutional and dense layers instead of the conventional
layers. The BNNs model consists of three blocks of 2 quantized
convolutional layers each with 128, 256, 512 filters, and two
dense layers of 1024 units before the softmax layer. We used
STE to solve the backpropagation challenge of BNNs for
gradient computations during training.

III. RESULTS AND DISCUSSION

We present the results of our experiments in Table I. These
results show that the BNNs accuracy is slightly lower than
the conventional baseline model on the HAR task due to their
reduced representational capacity caused by binary weights
and activations. However, the results obtained in terms of the
number of parameters and memory size show that they are more
suitable for deployment in HAR battery-powered low-memory
resource devices compared to the baseline.

It is also shown that the size of the low-parameterized BNNs
model is only 715 KB compared to 277450 KB of the baseline
model. The BNNs model also exhibits a lower number of
parameters compared to the baseline model. In terms of the
confusion ratio of the activities that don’t involve significant
change in velocity like drinking and picking up items, the
BNNs perform better than the baseline student model. This
is evidenced in the classification report shown in Table II.

IV. CONCLUSION

In this paper, we carried out an experimental evaluation of
the robustness and efficiency of the baseline and BNNs archi-
tectures on Doppler radar data for HAR in terms of accuracy,
precision, recall, F1 score, and loss parameters. We found out
that the BNNs model exhibits comparable performance with
the baseline when subjected to the radar HAR data. However,
the BNNs model exhibits a smaller number of parameters
with a small model size to achieve this performance compared
to the baseline. We also observe that BNNs typically suffer
from reduced accuracy compared to conventional networks,
especially on the complex HAR task. This is due to the
reduced representational capacity caused by binary weights and
activations. In the future, we hope to investigate the energy
consumption of the BNNs model before actual deployment in
low-resource devices.
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