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Abstract 

In this paper we introduce a method, Image Temporal Clustering (ITC), to perform temporal clustering. This method utilizes self-supervised 

image representation learning on image transformations of time series data. The use of image transforms of time series allows for the 

application of established image-based machine learning methods on time series data. This is the first time that a joint-embedding 

architecture is applied to image transformations of time series data for the purpose of clustering time series.  

 

 

I. Introduction 

Time series clustering is a self-supervised technique to analyze 

time series data without the use of labels. This is traditionally 

performed with feature-based methods to extract relevant patterns 

from the data. These features usually require domain-knowledge 

and are non-trivial to identify. Also, techniques that utilize such 

features are only applicable to time series datasets that are similar.  

Recent time series clustering methods that utilize deep learning 

[1, 2] were able to learn representations of time series data using 

recurrent neural networks (RNN) in the auto-encoder to extract 

features from the time series data. The use of the RNN allows for 

temporal features to be identified in the sequential data. However, 

Wang et al. [3] proposed 2 methods, Gramian Angular Fields 

(GAF) and Markov Transition Field (MTF), to transform time 

series data into images. This allows for the use of convolutional 

neural nets (CNN) on time series data as if they were regular 2D 

images, which presents an alternative to the current methods of 

using RNNs for temporal re-construction to identify features.  

A similar work by Anand et al. [4] performed feature extraction 

using a pre-trained CNN model. However, they used images of line 

plots of time series data instead of the GAF or MTF transforms. 

Also, the use of a pre-trained CNN means that the model is fixed 

and cannot be tailored to the features of new datasets. 

We propose the use of a joint-embedding network on the images 

of transformed time series data with a Variance-Invariance-

Covariance (VICReg) [5] objective. It is a self-supervised 

technique to find invariant features across images of time series 

and presents a new application of image-representation learning on 

image transformations of time series. The resulting representations 

will be used for clustering via the method of K-means. 

II. Methodology 

We propose a 3-stage process: the transformation of time series 

data into GAF and MTF images, the use of a joint-embedding 

network to produce image vector representations, and the use of 

K-means clustering on the vector representations to assign cluster 

labels. We term this method as Image Temporal Clustering (ITC). 

The process flow is summarized in Figure 1. 

 

 
Figure 1: Process flow of Image Temporal Clustering 

 

Let 𝑋  be a time series where 𝑋 = {𝑥1, 𝑥2, … , 𝑥𝑛} , and each 

𝑥𝑖  𝜖 𝑹. 𝑋 is then normalized to obtain 𝑋̃ where 𝑥𝑖̃ 𝜖 [−1,1]. 

The time series is then transformed to polar coordinates via 𝜙𝑖 =

arccos (𝑥𝑖̃) and 𝑟 =  
𝑡𝑖

𝑁
. The GAF matrix is obtained from the 

polar coordinate angular terms via 𝐺𝑖𝑗 = cos(𝜙𝑖 + 𝜙𝑗). 

Given the same time series 𝑋 , the data 𝑥𝑖  is sorted into 𝑄 

quantile bins. We can then count the transitions between the 

quantile bins associated with the data points and compute the 

transition probability between 2 quantile bins. The MTF is 

computed with each element 𝑀𝑖𝑗  representing the transition 

probability from 𝑞𝑖  to 𝑞𝑗 , where 𝑞𝑖  and 𝑞𝑗  represent the 

quantiles that 𝑥𝑖 and 𝑥𝑗  belong to respectively. 

The 2 resulting matrices are saved as a single channel image 

each. We follow the same processing method as Wang et al., where 

the 2 matrices are combined into a single GAF-MTF image coded 

by different channels. 
A joint-embedding neural network is then used to learn 

representations based on the set of images obtained from the earlier 

steps. The original image is augmented with a random crop of 

varying scale, producing alternate views of the image. The 2 views 

are then fed into a CNN encoder, producing a representation vector. 

The representation vector is then fed into an expander network, 

which projects the representations onto a common space. The 

resulting 2 embedding vectors are evaluated with the VICReg 

objective to produce the loss. The objective helps the network to 

identify invariant features between the views and produce a 

dimensionally reduced vector representation of the images. This 

has the potential to find useful features from the unique 

characteristics of the time series data in an unsupervised manner. 

A modification from the original VICReg method is the use of the 

projected vectors for clustering as opposed to using the encoder 

output. The reason is that the expander network helps to project 

the encoder outputs onto the same space, allowing for more fair 

distance-based comparisons in the K-means clustering algorithm. 

 

III. Experiments and Results 

A choice of ResNet-18 was made for the CNN-encoder in the 

joint-embedding network. A linear layer serves as the expander 

network to project the output of the ResNet network to a final 

vector of size 64, which is the embedding we will perform 

clustering on. 



 

Our method was evaluated on the 2018 UCR time series 

classification archive [6]. We utilized a similar data selection as 

Zhong et al. [2], where of the 128 datasets in the UCR archive, 10 

datasets were chosen: Beef, DistPhalOutlAgeGroup, ECG200, 

ECGFiveDays, Meat, MoteStrain, OSULeaf, Plane, 

ProxPhalOutAgeGroup, and ProximalPhalanxTW. We believe 

that this represents a diverse set of real-world time series datasets 

to evaluate our clustering technique. 

We compared ITC with the existing methods of K-means, u-

shapelet [7], DTC [1], and DTCC [2]. K-means was used as a 

baseline measurement. u-shapelet represents a non-deep learning 

method of temporal clustering, whereas DTC and DTCC 

represents some recent deep learning-based methods. We used the 

normalized mutual information (NMI) and Rand Index (RI) as the 

evaluating metrics. The results for RI and NMI are found in Table 

2 and Table 3 respectively. The results for ITC were obtained from 

an average of 10 runs. 

 

Table 2: RI scores on the 10 time series datasets 
Dataset K-means u-shapelet DTC DTCC ITC 

Beef 0.671 0.697 0.635 0.763 0.608 

DistPhalOutAgeGrp 0.617 0.627 0.781 0.752 0.643 

ECG200 0.632 0.576 0.602 0.673 0.645 

ECGFiveDays 0.478 0.597 0.502 0.658 0.580 

Meat 0.660 0.674 0.322 0.720 0.779 

MoteStrain 0.495 0.479 0.506 0.774 0.600 

OSULeaf 0.562 0.552 0.733 0.755 0.744 

Plane 0.908 1.000 0.904 0.937 0.941 

ProxPhalOutAgeGrp 0.529 0.521 0.743 0.809 0.738 

ProxPhalTW 0.479 0.479 0.838 0.861 0.814 

Average 0.603 0.620 0.656 0.770 0.709 

 

Table 3: NMI scores on the 10 time series datasets 
Dataset K-means u-shapelet DTC DTCC ITC 

Beef 0.293 0.341 0.275 0.475 0.235 

DistPhalOutAgeGrp 0.188 0.258 0.341 0.460 0.302 

ECG200 0.140 0.132 0.092 0.301 0.210 

ECGFiveDays 0.001 0.150 0.002 0.362 0.124 

Meat 0.251 0.272 0.225 0.610 0.621 

MoteStrain 0.055 0.008 0.009 0.465 0.164 

OSULeaf 0.021 0.020 0.220 0.235 0.272 

Plane 0.860 1.000 0.868 0.925 0.845 

ProxPhalOutAgeGrp 0.064 0.033 0.415 0.532 0.468 

ProxPhalTW 0.008 0.011 0.620 0.621 0.531 

Average 0.188 0.223 0.307 0.499 0.377 

 

From Tables 2 and 3, we can observe that ITC performs 

competitively with the other methods. The performance is close to 

recent deep learning temporal clustering methods. Among the 

methods presented, ITC achieves the 2nd best average score for 

both RI and NMI scores. 

For the RI scores, ITC achieved the best score in the Meat 

dataset and achieved close to best performance in the ECG200, 

OSULeaf, and Plane datasets. For the NMI scores, ITC achieved 

the best score in the Meat and OSULeaf datasets and achieved 

good performance in the ECG200, ECGFiveDays, MoteStrain, 

and the ProxPhalOutlAgeGroup datasets when compared with the 

other methods. 

Although it was not able to exceed the state-of-the-art results of 

DTCC in most of the results, the performance of ITC is well-

balanced across the datasets and it does not underperform very 

badly in datasets where other methods might have very low 

performance with respect to the NMI score (MoteStrain, OSULeaf, 

ProxPhalOutlAgeGroup, and ProxPhalTW). The other methods 

other than DTCC exhibit NMI scores that were close to 0 in some 

of these time series datasets. This suggests that some of the 

clusterings were almost random since the shared information was 

so low. ITC was able to have NMI scores across datasets that were 

not close to 0, demonstrating that the method was able to find some 

clustering features across all the datasets. 

IV. Conclusion 

We introduced a new self-supervised method of performing 

temporal clustering by using a joint-embedding network on 

transformed time series images. The method is simple in principle 

as it applies an established image representation learning method 

in a new way by learning on images obtained from processing time 

series. The results obtained is already competitive with recent deep 

temporal clustering methods despite having a relatively simple 

objective of only VICReg to find time series features. This 

technique demonstrates an alternative to the current crop of RNN 

auto-encoder-based deep learning methods on time series 

sequential data for time series clustering. 

The other deep temporal clustering methods additionally utilize 

a joint-optimization of learning representations and clustering. A 

possible future work could be to enhance this image-based 

temporal clustering method with a joint-optimization objective 

that involves clustering. 
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