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Abstract 

 
In natural language processing (NLP) problems, state-space models (SSMs) have emerged as strong competitors to Transformer-
based models due to recent developments in deep learning architectures. It has been demonstrated that small-to-medium sized 
language modeling with SSMs such as Mamba is on par with or superior to Transformer-based models. Developing efficient and 
versatile vision frameworks based solely on SSMs is an intriguing approach. The hypothesis behind this study is that SSMs' sequential 
modeling capabilities can be successfully applied to capture spatial dependencies in image data, thereby expanding the application 
of SSMs to visual tasks. We introduce Visual-SSM, a novel SSM-based architecture intended for computer vision applications. 

 

Ⅰ. Introduction  

Recent research advancement, Transformers [1] have 
become the de facto standard architecture in many areas 
such as computer vision, natural language processing, 
robotics, and audio processing. The advantages of 
Transformers over other architectures are primarily due to the 
attention mechanisms [2] and their flexibility is well-suited for 
multimodal learning tasks which require integrating 
information from diverse datasets. However, one of the main 
concerns with Transformer is the quadratic complexity of 
attention mechanism with respect to sequence length poses 
a significant computational challenge. To alleviate this 
limitation, Mamba [3] proposed a new state space model 
(SSM) which achieves linear time complexity and is on par or 
outperform Transformers [3] in different natural language 
processing tasks. The key innovation of Mamba is an 
alternative approach of selection mechanisms which enables 
efficient input-dependent processing of long sequences with 
optimized hardware-aware configurations. 

In this paper, we propose a Visual-SSM which is solely 
based on SSM to be more suitable for vision tasks. The model 
is evaluated on CIFAR-10 dataset. 
Ⅱ. Methodology 
The Visual-SSM is a state space model designed to provide 

insight into capability of the state space model for vision 
tasks. This approach excludes the other architectures like 
convolutions, which have a strong inductive bias toward local 
patterns of images in early layers or transformers to capture 
the long-range dependencies within image data. This 
approach allows us to focus on an examination of the state 
space model’s intrinsic capabilities in vision tasks, which is 
unaugmented by other specialized architectures. 

Mamba is an extension of structured state space model (S4) 
which is inspired by the continuous system, which transform 
a 1D continuous input 𝑥(𝑡) ∈ ℝ to 𝑦(𝑡) ∈ ℝ via a learnable 
hidden state ℎ(𝑡) ∈ ℝ𝑀  with parameters 𝑨 ∈ ℝ𝑀×𝑀and 𝑪 ∈
𝑅1×𝑀 according to: 

ℎ′(𝑡) = 𝑨ℎ(𝑡) + 𝑩𝑥(𝑡), (1) 
𝑦(𝑡) = 𝑪ℎ(𝑡)                            (2) 

Discretization The S4 and Mamba are the discrete versions of 
the continuous system, hence, the continuous parameters 𝑨, 
𝑩, and 𝑪 are required to be discretized for better 
computational efficiency [4]. Consider a timescale parameter 
𝚫 to transform our mentioned continuous parameters to 
discrete parameters  𝑨̅, 𝑩̅, and  𝑪̅. In practice, zero-order hold 

(ZOH) is commonly used for such a transformation and is 
defined as follows: 

𝑨̅ = exp(𝚫𝑨),                                  (3) 
𝑩̅ = (𝚫𝑨)−1(exp 𝚫𝑨) − 𝑰) ⋅ 𝚫𝑩.  (4) 

After the discretization, Eq. (1) and (2) can be expressed as: 
ℎ′(𝑡) = 𝑨̅ℎ(𝑡 − 1) + 𝑩̅𝑥(𝑡), (5) 
𝑦(𝑡) = 𝑪̅ℎ(𝑡)                                     (6) 

Finally, the models compute through a convolution as follows: 
𝑲̅ = (𝑪𝑩,̅ 𝑪𝑨𝑩̅̅ ̅̅ , … , 𝑪𝑨̅𝑀−1𝑩̅),        (7) 
𝒚 = 𝒙 ∗ 𝑲̅,                                           (8) 

where 𝑀 is the length of the input sequence x, and 𝑲̅ ∈ ℝ𝑀 is 
a structured convolutional kernel. 

Visual-SSM Our architecture consists of 2.6 million 
parameters including layers such as linear layer, layer 
normalization [5], dropout [6], global average pooling [7], and 
Mamba Block [3]. Mamba Block contains convolution 1D, 
Residual Connection [8], SSM [2], and SiLU [9]. As illustrate in 
Figure 1 is our Mamba block, in which 𝜎 denotes our SiLU 
activation. In addition, our overall architecture can be seen in 
Figure 2, the model takes the input of image and embed it into 
1D sequence as Mamba is designed to take 1D sequence. We 
first transform the 2D image 𝑰𝒎𝒈 ∈ ℝ𝐻×𝑊×𝐶  into the flattened 
2D patches of size 𝐻′𝑊′ × (𝑃2 ⋅ 𝐶) in which (𝐻, 𝑊) is the size 
of input image, 𝐶 is the number of channels, (𝐻′, 𝑊′) is the size 
of image after dividing by the image patches.  𝑃 is the size of 
image patches which in our case is equal to 4. 

 

Figure 1. Architecture of MambaBlock. A symmetric path 

without SSM to enhance the modeling of global context. 

    Ⅲ. Results and Discussion 

    The experiments were conducted primarily on the CIFAR-10 
dataset, which consists of 60000 images across 10 categories. 
During training, data augmentation techniques including 



 

normalizing input according to their mean and standard 
deviation, and RandAugment [10] has been used to get our 
Visual-SSM to be more robust. Additionally, we compare our 
Visual-SSM with a plain Vision Transformer [11] containing 2.7 
million parameters, with the outcome demonstrated in Table 
1. 
 

 Visual-SSM Vision Transformer 

Class Top1 - Accuracy 

Plane 90.00% 87.20% 

Car 94.50% 89.30% 

Bird 82.10% 80.60% 

Cat 77.90% 71.20% 

Deer 88.10% 81.20% 

Dog 75.80% 78.00% 

Frog 90.00% 89.80% 

Horse 88.70% 87.10% 

Ship 93.70% 90.20% 

Truck 91.30% 94.30% 

Overall 87.21% 84.90% 

Table 1. Demonstrate the result from the experiment with all the 

classes and overall top-1 accuracy. 

   IV. Conclusion 
 

In this study, we introduce Visual-SSM, which is mainly 
based on SSM for vision tasks. Visual-SSM achieves 87.21% 
on CIFAR-10 dataset. We hope that this work contributes 
meaningful insight to the field of computer vision and serves 
as the foundation for future development involving SSM. 
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Figure 2. The Visual-SSM architecture. The first phase we rearrange our image with patch size of 4 and embedding 

layer each followed by a layer normalization respectively, then we apply our Mamba Block 6 times. 


