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Abstract  

 
Energy efficiency and indoor thermal comfort are both significant aspects of the built circumstances, so they 

must be considered concurrently throughout the design phase of a building. Computational fluid dynamics (CFD) and 

building energy simulation (BES) can be utilized together to give complementary information on a building's energy 

performance and the conditions of the internal environment. Nevertheless, the primary deficiency of CFD is its high 

computational expense, which restricts its function. Deep Learning (DL) is regarded as one of the most practical 

alternatives to CFD because of its evolved modeling capabilities, high accuracy, and adaptability at the expense of 

significant computational resources. This study proposes to validate the expediency of using U-Net architecture, a 

deep learning subfield, to predict indoor airflow based on CFD. The findings demonstrate that the U-Net simulates 

indoor airflow prediction with a total loss of 0.7688 and a total validation loss of 0.5804. It is confirmed that U-Net can 

be used to predict indoor airflow. 
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Ⅰ. Introduction 

   As the energy crisis has deteriorated, the building 

energy simulation (BES) method has been broadly 

employed to predict building energy utilization and 

thermal performance. A year's worth of mechanical 

system performance and energy consumption data 

can be thoroughly researched by some BES 

programs for the target facility [1]. 

   Integrating building energy simulation (BES) and 

computational fluid dynamics (CFD) delivers 

essential data about constructing energy and 

environmental conditions, a valuable tool to manage 

the issues. This integration between BES and CFD 

can deliver the necessary data and produce better 

outcomes than either program working independently. 

Furthermore, CFD and BES simulation can be 

deployed simultaneously with one another to find a 

comprehensive resolution for the operation and 

design of low-energy buildings [2]. 

    In terms of deep learning techniques applied to 

CFD, the approach of this study uses the direct 

calculation of the desired fluid characteristics. The 

U-Net model used in this study initially modified 

CNN, which was first implemented in biomedical 

image segmentation, can localize images by 

forecasting them pixel by pixel. The network is 

potent and sufficient to produce precise predictions 

[3]. In order to predict two-dimensional indoor 

airflows that CFD first rebuilt, with U-Net model  

 

architecture is implemented, as described in this 

study. 

Ⅱ. Methods  

A. Geometry Representation  
 

The geometry representation used in this paper is a 

Signed Distance Function (SDF) provides a distance of 

point X from a surface's boundary, allowing us to 

identify whether a point is inside or outside the 

boundary [4]. In the train and test dataset utilized for 

this study, there are 300 cases of each Ux, Uy, Grid, 

and Boundary data, with the target output of Ux and Uy 

for velocity fields. 

 

B. U-Net Model Architecture 
 

The U-Net architecture comprises an expanded lane 

on the right and a contracting lane on the left of the 

architecture. The contracting lane adheres to the 

standard convolutional network architecture. Each step 

of the expansive lane is generated after the upslope of 

the feature map [5]. The primary contribution of U-Net 

in this study is concatenating more high-resolution 

feature maps from the decoder side with the upslope 

elements to enhance the learning of models with 

subsequent convolutions. Since upslope is a sparse 

process, a solid prior from earlier stages is required to 

describe localization more precisely. In U-Net 



architecture, there are two convolutional layers for 

each method. The image dimensions are halved when 

operating the max pooling process. While this design 

uses padding= "same," the size descending from 

200×300 to 196×296 is due to padding problems. On 

the other side, the image will be enlarged to its initial 

size on the expansive lane. Transposed convolution is 

an upslope method that enlarges images. Here, data 

from the foregoing layers are merged to create a 

prediction that is more precise. This paper shows how 

well such Deep Learning of U-Net networks can be 

utilized to map combined velocity field geometries to 

steady-state airflow solutions, even though U-Net was 

first constructed to segment medical images [6].  

 

III. Results and Analysis  

 

   In this paper, the U-Net model was trained with a 

dataset that was split into 70% train and 30% test, the 

number of epochs 2000, and the learning rate 0.001. 

The experiment was carried out with 1 batch size, while 

the Adam optimizer was implemented because it can 

gain the fastest confluence time[7]. The total loss of 

0.7688 and total validation loss of 0.5804 of the training 

U-Net model. Due to the noise that small batches add 

to the updates, which benefits training in avoiding 

suboptimal local minima, it was concluded that the small 

batch used in this study has a regularizing effect[8]. 

   In Figure 1, the comparison of prediction and target 

data is shown, along with the magnitude of the Ux and 

Uy velocities in the airflow field. With relatively low 

error rates, the U-Net model can represent these 

modeling processes. 

 

 

 

 

 

 

 

 

 

 

 

Figure 1. Data prediction, target, and data error for 

Ux and Uy velocity fields. 

 

III. Conclusion  

 

   This study uses a U-Net model, which predicts 

airflow in a two-dimensional environment of Ux and Uy 

velocity fields, to demonstrate how indoor airflow 

prediction based on CFD is implemented. With a total 

loss of 0.7688 and a validation loss of 0.5804, the U-

Net model is proven viable for accurate prediction. 

   For future work, the study needs to involve 

predicting pressure fields along with Ux and Uy 

velocity fields of airflow. Furthermore, the U-Net 

model can be combined with another model, such as a 

Transformer, to solve the overfitting and gain lower 

loss and validation loss.   
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