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Abstract—This study aims to employ a model of hybrid
autoencoder quantum neural network (HAQNN) is purposed
to optimize the precoding in multiple-input and multiple-output
(MIMO) in wireless communication. Furthermore, the autoen-
coder is developed to mitigate the limitation of the experimental
preparation instance as the quantum state. Moreover, performing
the gradient descent by applying the stochastic parameter-shift
rule to achieve optimal performance for training is considered.
The presented scheme is then employed to optimize MIMO.

Index Terms—Quantum neural network, autoencoder, wireless
optimization, wireless communications.

I. INTRODUCTION

The next generation in wireless communication such as
5G and beyond is an important technological revolution and
become more challenging to optimize the networks. However,
the performance of the future wireless communications systems
are significantly affected by optimization, in particular, in
precoding MIMO [1]. Moroever, the number of variables to
be optimized grows with the number of network and wireless
elements (e.g., number of users and transmit antennas) [2].

Recent studies shows the quantum neural network (QNN),
which taking advantage of quantum mechanics such as quantum
superposition and entanglement, has potential to have increased
training capability and reduced training time [3]. Unfortunately,
existing and near-term quantum computing with the number
of qubits will not have the capacity to utilize the number of
variables in which case the large number of networks and
wireless elements, due with a long circuit depth or a large
number of qubit is limited [4].

However, to cope with this issue, HAQNN [3], which
employs encoder, decoder and parameterized quantum rota-
tion gates, which can reduce the number of input elements.
Specifically, for future of wireless optimization.

Similar to classical neural networks (NNs), HAQNN pa-
rameter vector also needs to be optimized, usually done
stochastically with a number of data samples. This study
explores the possibilities of training a particular of HAQNN
model with parameter-shift rule to estimate gradients and
optimize variational parameters [5].

Notations let ® Kronecker product, C indicate the complex
numbers. ()T indicates conjugate transpose. The notation of
Ry, refers to x-axis rotation operation in quantum circuit and
the notation ® indicate as multiplication.

II. AUTOENCODER QNN ARCHITECTURE

The closeness between the techniques used in classical
machine learning. Autoencoder in QNN is use to combat
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Figure 1: Schematic representation of hybrid autoencoder
quantum neural network.

problem in early quantum device, the first stage to employs
classical neural network, which can reduced the number
of dimension input element significantly. Specifically, the
output of /th dense layer which generally can be presented
as x = F(x; ©® w; + b;), where F(.) indicates the activation
function, x; is the input of the [th layer, w; is the weight
vector, b; are the bias vector.

In this case, the first stage is an encoder to the classical neural
network as shown in fig. 1, which can reduce the number of
input elements for the quantum state significantly. The original
dimension of input state is a vector of x = H € CNTa X Nuser
which are then decoded into classical part to obtain into state
of X as qubit preparation.

Since, the input stage to the encoder can reduce the input
dimension to the quantum circuit. The decoder serves as a
decompressor and builds back the dimension of the element
vector from it is latent attributes. Considering the decoder
model as in fig. 1, the output decoder can be presented as
v < F(6;z), where, 0 is the vector of the decoder, z is the
output from QNN.

ITIT. SYTEM MODEL
A. Wireless Optimization

For the optimization of the single-cell downlink MIMO,
transmitting antenna precoding can be optimized. The base
station (BS) with Nt be the number of transmitter arrays
serving the Ny receiving user. Each user have a single
receiving antenna. Let P be the transmit power of the BS.
As an input for the HAQNN, the Rayleigh fading chan-
nel information of H € CNm*Nwer are considered. Hence,
H +— x. The channel coefficient for the kth user denotes



as H ~ CN(0,d.") € CN, where d;, € (0,1) and &
indicates the normalized distance values and channel coefficient,
respectively. Moreover, the precoding vector of the transmit
antenna is denoted as v. The signal-to-interference-plus-

noise-ratio (SINR) for kth user terminal can be defined as
|H, Vi | P
Fk = N- . )
a3 N1 [H Vm |2 P+o?
beam interference constant and additive white Gaussian noise
(AWGN) with variance, respectively. The user rate of kth user

L HLPr
aZ;V:TiHIHT, V|2 P+o? :

The sum rate of the users is given as Ry, = ZN““' Ry [1].
The objective is an optimize the sum-rate, which can be
presented as:

where a and o are the inter-

is calculated as Ry = log,

max Rgum (1a)
st |lvll% < Nr (1b)

Accordingly, the objective can be estimated as non-fractional
programming [6].

B. Quantum Variational Circuits

As shown in fig. 1, the constructions of quantum neural net-
work can be implemented as variational quantum circuits. These

encoding operation of the quantum operational circuits can be
Nyeight Nata
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)) is encoding part [7].
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Figure 2: Utilized quantum circuit for simulation QNN.

C. Training Model Based Parameter-Shift Rule

The partial gradient of the quantum node f with respect to
the 6; can be expressed as [5]

Vo, fuagnn(z; 01 1)

1
i(fHAQNN(l'; 0 + 5) — fuaqun(z; 0171 — 5)),
)

where s is the shifting parameter. To update the ¢th parameter
Hz[t], the following expression is considered:

01 = 011 — Ve £ (Unagwn (23017 1)), (3)

where 7 is the learning rate. Subsequently, the loss function
can be expressed as £ = — Ry,m, which considers unsupervised
learning.

IV. SIMULATION RESULT

The simulation scenario operations were performed in IBM Q
using IBM qiskit. During the numerical simulation, Ny = 3
Ny =8, P/o? =10 dB, and 1 = 0.01, Nygpits = 4 N

ayer
where N,Eejm = 2, was considered. Employing Monte—Carlo
simulation of 1000 trials. The performance of the MIMO by
using the presented HAQNN is shown in Fig. 3.
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Figure 3: Achievable rate by using HAQNN.

V. CONCLUSION

This study explores the opportunity of optimizing wireless
communication using a hybrid autoencoder-based QNN. A
particular numerical training result was shown. For future
work, integration with massive MIMO can be considered.
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