
 
 

흉부 엑스선 결핵 검출을 위한 EfficientNets 비교 

아흐마드 이자즈, 신석주* 

컴퓨터공학과, 조선대학교 

ahmadijaz@chosun.kr, *sjshin@chosun.ac.kr(교신저자) 

 

A Comparison of EfficientNets for Tuberculosis Detection in Chest Radiographs 

Ijaz Ahmad, Seokjoo Shin 

Dept. of Computer Engineering, Chosun University 

 

Abstract  

 
Deep learning (DL) models keep improving for natural image classification not only in terms of model performance but 

also in their number of parameters, floating-point operations (FLOPs), training and inference speed. Consequently, the 

applications of such models are extended to other computer vision (CV) related fields such as medical image analysis 

domain. Among the existing DL models, a new model of EfficientNet family namely EfficientNetV2 provides parameter 

and FLOPs efficiency along with training speed on natural images. The present study analyzes EfficientNetV2 suitability 

for Tuberculosis (TB) detection in Shenzhen chest X-ray (CXR) image dataset and compares it with EfficientNetV1 

model. The analysis have shown that the EfficientNetV2 delivers the same sensitivity score as that of EfficientNetV1 

model for the same number of parameters with better training speed. 

 

Ⅰ. Introduction  

Tuberculosis (TB) remains one of the leading cause 

of death from a single infectious agent according to the 

World Health Organization (WHO) [1]. The disease 

spread and mortality is preventable by its early 

detection [1], [2]. The WHO organization recommends 

chest X-ray (CXR) images for screening pulmonary 

abnormalities due to its wide availability and relative 

low cost [2]. With the recent success of Machine 

Learning (ML) in the field of computer vision, automatic 

computer aided diagnosis (CAD) systems have emerged 

to assist doctors and practitioners. Particularly, DL, a 

subfield of ML, has achieved state-of-the-art 

performance for image classification [3].  

Several DL models have been proposed for diagnosis 

of TB [4]. Among them EfficientNet models provide 

parameter and FLOPs efficiency with better training 

and inference speed. For example, EfficientNetV1 [5] 

based model has achieved 89.92% accuracy when the 

images were enhanced with unsharped masking in [6]. 

Their accuracy can be improved to 94.25% with 

transfer learning (TL) as in [2]. For the most recent 

EfficientNetV2 [7], accuracy of 89.52% can be 

achieved without TL and pre-processing [3]. 

The present study compares EfficientNetV1 and 

EfficientNetV2 in terms of accuracy, sensitivity and 

specificity for TB screening in Shenzhen dataset[8]. 

The baseline B0 model was extended to B1, B2 and B3. 

Ⅱ. Methods  

This section provides a brief summary of EfficientNet 

models and highlights their differences. EfficientNet [5] 

(EfficientNetV1) is a family of lightweight convolutional 

models that are optimized for parameter and FLOPs 

efficiency. It takes advantage of neural architecture 

search (NAS) to design a baseline EfficientNet-B0 that 

has better trade-off on FLOPs and accuracy. The 

baseline network is then uniformly scaled up (depth, 

width, and resolution) with a simplified and effective 

compound scaling strategy to obtain a family of models 

B1-B7. The models have superiority over existing CNN 

models in terms of number parameters and FLOPs as 

they use depthwise convolutions. However, such 

convolutions often cannot fully utilize modern 

accelerators; therefore, EfficientNetV1 have main a 

limitation in terms of training or inference speed (for 

example, compare to ResNet-RS-420)[7]. Therefore, 

EfficientNetV2 [7] improves training speed of 

EfficientNetV1 models while maintaining the parameter 

efficiency. Specifically, EfficientNetV2 provides three 

solutions to EfficientNetV1 training bottleneck. First, 

for better training speed, EfficientNetV2 proposed to 

adjust the image size and regularization progressively 

during training. Second, EfficientNetV2 proposed a 

non-uniform scaling strategy to add more layers to 

later stages gradually as opposed to EfficientNetV1 

that equally scales up all stages by using a simple 

compound scaling rule. Finally, to fully utilize modern 

accelerators, EfficientNetV2 proposed that Fused-



 

MBConv in early stage can improve training speed with 

a small overhead on parameters and FLOPs. The 

Fused-MBConv replaces the combination of depthwise 

Conv3×3 and expansion Conv1×1 in MBConv with a 

single regular Conv3×3 layer. 

Ⅲ. Results  

Dataset: In this study, a publicly available chest 

radiograph dataset called Shenzhen (SH) China dataset 

[8] was used. It consists of 326 CXR images of normal 

and 336 CXR images of TB cases. Only 326 images per 

class were used to balance the dataset. The dataset 

was split into training, validation and testing sets which 

account for 80%, 10 and 10%, respectively. In addition, 

the input images were pre-processed as: (1) all black 

borders and regions on the edges of images were 

cropped and (2) the images were resized from the 

center to meet the models input size requirements. 

Metrics: In analysis, we considered samples with TB 

as positive and healthy samples as negative classes. 

The number of observations belonging to the positive 

class and classified as such are true positives (TP) and 

misclassified as negative class are false negatives (FN). 

Similarly, the number of observations belonging to the 

negative class and correctly classified as such are true 

negatives (TN) and misclassified as positive class are 

false positives (FP). For the models performance 

evaluation, we have considered three measures namely, 

accuracy (Acc), sensitivity (Sen) and specificity (Spe). 

The performance metrics are defined as: 

ቐ
Acc ൌ ሺTP ൅ TNሻ ሺTP ൅ TN ൅ FP ൅ FNሻ⁄
Sen ൌ ሺTPሻ ሺTP ൅ TNሻ⁄ 	 	 	 	 	 	 	 	 	 	 	 	 	 	
Spe ൌ ሺTNሻ ሺTN ൅ FPሻ⁄ 	 	 	 	 	 	 	 	 	 	 	 	 	 	

ሺ1ሻ 

Accuracy measures the total number of correct 

predictions (TP + TN) made by the model, which is the 

ratio of correct predictions to total predictions. 

Accuracy is important when FN and FP have similar 

costs. However, for disease diagnosis, the occurrence 

of FN is intolerable and identifying the positives is 

crucial [3]. For this purpose, sensitivity is the metric 

that measures performance of a model in terms of how 

fewer number of FN are predicted. Another related 

metric is specificity, which gives the ratio of true 

negatives to total negative in the observations. 

Training Setup: The models were trained for 500 

epochs using Stochastic Gradient Descent (SGD) with 

batch size 16. The initial learning rate was set to 0.1, 

which was then reduced by a factor of 10 when 

validation accuracy stopped improving. In addition, we 

have used early stopping criteria once the model 

validation accuracy stopped improving for 60 epochs. 

During training, random flip, rotation, zoom, translation 

and contrast were used as augmentation methods. 

Table 1. presents EfficientNet models performance in 

terms of accuracy, sensitivity and specificity for TB 

detection in X-ray images. For the EfficientNetV1 

models, the accuracy improved with the model size. 

However, for the EfficientNetV2, the best accuracy is 

achieved for B0. Overall, there is a 2% difference in the 

best accuracies of both versions. For sensitivity, the 

most important metric in disease diagnosis, both 

versions have the same value of 89%, which is achieved 

by EfficientNet-B1 and EfficientNetV2-B0.  

IV. Conclusion 

This study provides a comparative analysis of 

EfficientNet family models versions 1 and 2 for TB 

screening in X-ray images. The EfficientNetV2 

preserves parameter and FLOPs efficiency of 

EfficientNetV1 while improving their training speed. 

The analysis have shown that EfficientNet models are 

suitable for TB detection with a sensitive score of 89%. 

In medical image analysis, transfer learning (TL) is 

widely used to improve a model performance on limited 

available data. Therefore, comparing both versions with 

TL is an interesting future research direction. 
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TABLE I. Performance comparison of EfficientNet models for TB 

screening in Shenzhen dataset. 

Metric 
EfficientNetV1 EfficientNetV2 

B0 B1 B2 B3 B0 B1 B2 B3 

P (M) 5.3 7.9 9.2 12.3 7.2 8.2 10.2 14.5 

Acc 86 87 87 89 87 84 85 86 

Sen 81 89 79 86 89 84 82 84 

Spe 91 85 94 91 85 84 87 88 
P (M): # of parameters (million)


