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Abstract 
 

To investigate the effect of multi-channel input data in deep learning networks, deep learning models using single- and multi-channel input 

data were trained for brain metastases detection, and their performance was evaluated and compared. The YOLO v2 networks based on the 

pre-trained ResNet50 were trained using a single (SPACE GD)- and multi (MPRAGE, SPACE GD, MPRAGE GD)-channel input data., the 

overall performances of the deep learning model with multi-channel input data showed lower false positive average but lower sensitivity 

compares to the single-channel model. In this study, a deep learning model using multi-channel input data does not guarantee improved 

performance, however, it may improve performance in certain cases. 

 

Ⅰ. Introduction 

Data collection in the medical image domain is difficult 

compared with the general image domain because of Patient 

Privacy Policy[1], such as the Health Insurance Portability and 

Accountability Act (HIPAA)[2], hence, deep learning studies in 

medical image domain are often performed using a limited amount 

of data. Special medical imaging techniques can obtain the images 

in same dimension with various pattern of intensities, such as 

magnetic resonance images (MRIs) with different sequences [3], 

and by using images with multi sequence images as multi-channel 

input data, the deep learning model can be trained with more data 

and patterns. 
Brain metastases (BMs), which commonly originate from lung 

cancer, breast cancer, or malignant melanoma, are the most 

common intracranial tumors, and contrast-enhanced T1-weighted 

imaging (CE T1WI) magnetic resonance (MR) sequence and 

black-blood (BB) imaging are key in the diagnosis of BM[4]. 

Recently, deep learning-based algorithms that automatically detect 

or segment BM lesions have been proposed [5]. 

In this study, to compare the performance with different 

amounts of input data, we developed two deep learning models 

with single- and multi-channel input data for BMs and investigated 

their performance. 

 

Ⅱ. Materials and Methods 

MR data were acquired using a 3T MR system (3T 

MAGNETOM VIDA; Siemens, Erlangen, Germany). The MRI 

protocol for BM included pre-contrast-enhanced 3D-MPRAGE T1 

weighted image (T1WI), post-contrast-enhanced 3D BB image 

(sampling perfection with application-optimized contrasts using 

different flip angle evolutions, SPACE GD), and post-contrast-

enhanced 3D MPRAGE T1WI (MPRAGE GD). After acquire the 

3D MPRAGE, MPRAGE GD, and BB images in sagittal plane, 

image reconstruction in axial plane was performed with the slice 

thickness of 3 mm. 

This retrospective study collected anonymized MR data from 

Kyung Hee University Hospital, and a total of 113 individuals 

were acquired from May 2019 to February 2021, and all 

individuals was randomly separated into five subgroups for five-

fold cross-validation. The MR dataset consisted of 6,196 slices 

with 585 metastases in 1,055 images for each sequence. 

The labeling process was performed by a board-certified 

radiologist with drawing a rectangular boundary box with the 

single label “brain metastases” to include all BM lesions in SPACE 

GD image on all slices where the BM was located. These boundary 

boxes were replicated into MPRAGE and MPRAGE GD to enable 

multi-channel data. The labeling process was conducted based on 

2D slice, and the object detection network was trained BM labels 

corresponding to each slice. However, radiologists generally 

determine a diagnosis based on overall BM mass, rather than 

individual slices. Accordingly, the BM was evaluated based on 

total mass rather than each slice. To do this, a process of re-

labeling BM labels when overlapping 0.3 intersection over union 

(IoU) or more in adjacent slices as one mass was performed, and 

an independent order was assigned to each BM mass. According 

to response assessment criteria for brain metastases[6], any BMs 

of less than 5 mm were excluded. 

Two YOLO v2 [7] networks with pre-trained ResNet-50 [8] as 

a backbone were trained using single(SPACE GD)- and 

multi(MPRAGE, SPACE GD, and MPRAGE GD)-channel input 

data (Figure 1.) with the following parameters: number of anchor 

boxes of 7, optimizer using ‘Adam’, factor for L2 regularization of 

0.0001, the initial learning rate of 0.001, mini-batch size of 64, and 

maximum epochs of 1,000. For data augmentation, random image 

rotation (0°, 90°, 180°, and 270°) and random horizontal flipping 

were applied while training both networks. Skull stripping using a 

brain extraction tool (BET, v1.3) and image intensity 

normalization were performed for all training data as pre-

processing. 

All training and pre/post-processing were conducted using 

MATLAB (MathWorks, R2020b, Natick, MA, USA) on a single-

server workstation with a Windows operating system (Window 

Server 2016) with double NVIDIA V100 graphic cards and 32-GB 

memory. To compare the performance of deep learning networks 

for single- and multi-channel inputs, performance was evaluated 

in terms of sensitivity, precision, F1-Score, and false positive 

average (FPavg). Furthermore, each lesion was evaluated as a true 

positive if even only part of the lesion was predicted as brain 

metastases by the deep learning model. 

 

Figure 1. Simple diagram of single- and multi-channel input model  

 
 

Ⅲ. Results 



Table 1 show the performance of the two deep learning models 

for single- and multi-channel input data for five-fold cross 

validation. The overall performances of the deep learning models 

with single-channel input data was 88.03%, 23.24%, 36.77%, 

15.05 for sensitivity, precision, F1-Score, FPavg, respectively. The 

overall performances of the deep learning models with multi-

channel input data was 82.27%, 34.87%, 48.98%, 7.97 for 

sensitivity, precision, F1-Score, FPavg, respectively. Figure 2 

shows examples of two deep learning models. The multi-channel 

input model did not detect the false positive (upper) which is 

detected by the single-channel input model, but some BMs are not 

detected (lower). 

 

Table 1. Summary of the performances of deep learning models 

with single- and multi-channel input data. 
 Sensitivity Precision F1-Score FPavg 

Single-channel     

Overall 88.03% 23.24% 36.77% 15.05 

Cross validations     

Dataset1 87.12% 23.39% 36.88% 21.14 

Dataset2 86.55% 23.02% 36.36% 21.52 

Dataset3 80.88% 19.57% 31.52% 10.27 

Dataset4 89.52% 29.84% 44.76% 9.61 

Dataset5 97.44% 20.54% 33.93% 12.78 

     

Multi-channel     

Overall 82.27% 34.87% 48.98% 7.97 

Cross validations     

Dataset1 79.25% 38.18% 51.53% 9.27 

Dataset2 85.12% 36.02% 50.62% 11.55 

Dataset3 73.91% 20.00% 31.48% 8.87 

Dataset4 82.86% 46.77% 59.79% 4.50 

Dataset5 88.75% 34.98% 50.18% 5.74 

 

Figure 2. Examples of two deep learning models for BM detection. 

the ground truth and predicted box were presented with blue and 

green boxes, respectively. 

 
 

Ⅳ. Discussion and Conclusion 

In this study, deep learning-based object detection networks 

with single- and multi-channel input data were applied to detect 

BM, and their performance was compared. Deep learning models 

were trained from data, and researcher or developer usually 

expected that a more amount of data would improve the 

performance of deep learning network, which is a common idea in 

deep learning [9]. From the result, the performance of the multi-

channel input data model improved by 12.21% of the F1-score, 

which integrates the sensitivity and precision. However, the 

sensitivity of the multi-channel model decreased by 5.76%, and the 

decrease in sensitivity is not desirable if it is applied as computer-

aided diagnostic algorithm for radiologists. From a statistical 

perspective, the independent multi-channel input data that has 

been tripled increases the complexity of the deep learning 

algorithm, and consequently, it does not improve the sensitivity of 

the deep learning model. 

From the previous study, Al-masni et al. [10] compared three-

channel input imaging types: SWI, phase, and magnitude images. 

The two-channel model using pre-processed SWI and phase 

showed the best performance, whereas the three-channel model 

using SWI, phase, and magnitude showed the lowest sensitivity. 

Fei et al. [11] proposed a multimodal computing model for MRI 

synthesis based on deep learning with a feature-disentanglement 

strategy. They compared the performance of FLAIR synthesis 

between the T1, T1+T2, and T1+T2+T1c models and reported that 

although the triple-input model (T1+T2+T1c) produced the 

highest PSNR value, there were no significant differences between 

the three models. 

From the results of this study and the above experiments, we did 

not observe a consistent improvement in performance as the 

number of input channels increased. Although multichannel input 

does not guarantee improved performance, however, it may 

improve performance in specific cases. 
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