
A Comparative Study of Quantum Circuit Mapping
Techniques for NISQ Devices

You-Seok Lee, Jongheon Lee and Yousung Kang
Cyber Security Research Division

Electronics and Telecommunications Research Institute(ETRI)
Daejeon, South of Korea

yslee75@etri.re.kr

Abstract—Noisy Intermediate-Scale Quantum (NISQ)
computers impose severe architectural constraints that prevent
direct execution of logical quantum circuits. As a result,
quantum circuit mapping—transforming ideal circuits into
hardware-compatible forms—has become a critical task in
quantum software toolchains. This paper presents a
comparative study of key mapping techniques, focusing on
circuit depth, SWAP gate overhead, and fidelity awareness.
Through a case analysis on a 5-qubit Quantum Fourier
Transform (QFT) circuit, we demonstrate the performance
trade-offs of several prominent mapping strategies, including
naive greedy routing, Qiskit’s SABRE, and CQC’s t|ket>. Our
findings reveal that mapping technique selection has a profound
impact on circuit quality and feasibility on real NISQ hardware.

Keywords—NISQ, quantum circuit, quantum circuit mapping

I. INTRODUCTION
Quantum computing hardware has rapidly advanced to the

NISQ era, where quantum processors comprise tens to
hundreds of qubits but still suffer from noise, short coherence
times, and restricted qubit connectivity [1], [2]. Under these
limitations, quantum circuits designed at a logical level must
be carefully adapted to the physical layout of a target device.
This process—known as quantum circuit mapping—is
essential to make circuits executable while minimizing
performance degradation [1].

A major challenge in mapping arises when a two-qubit
gate involves qubits that are not adjacent on the hardware
topology. In such cases, SWAP gates must be inserted to bring
qubits together, often leading to deeper and noisier circuits [1-
3]. Excessive SWAP usage increases error rates and reduces
the overall fidelity of computation [2], [3].

Various mapping strategies have been proposed to address
this issue [2-4]. Some employ simple greedy heuristics, while
others use look-ahead search or error-aware optimization. In
this study, we compare representative techniques from both
ends of the spectrum to evaluate their effectiveness in
minimizing routing overhead and preserving circuit integrity.

II. QUANTUM CIRCUIT MAPPING TECHNIQUES
Mapping a logical quantum circuit to NISQ hardware

typically involves three main steps [4]:

1. Initial Qubit Placement: Assign logical qubits to
physical ones.

2. Routing: Insert SWAP gates where needed to satisfy
coupling constraints.

3. Optimization: Reduce gate count or depth through
commutation and rewriting.

The quality of mapping significantly affects the circuit’s
executable fidelity and resource requirements. We now
describe three representative mapping strategies:

A. Naive Greedy Mapping
This method processes gates sequentially and inserts

SWAP gates whenever two non-adjacent qubits are involved
in a two-qubit gate. It does not consider future gate
dependencies or topology optimization, often leading to
inefficient circuits [1].

B. SABRE (SWAP-Based Bidirectional Heuristic)
SABRE, implemented in IBM’s Qiskit, evaluates multiple

candidate SWAPs at each step using a cost function that
estimates future gate costs. It performs a forward-backward
pass to find near-optimal placements with moderate runtime
[4], [6].

C. t|ket> Mapping
Cambridge Quantum Computing’s t|ket> employs a look-

ahead search with error model integration. It selects SWAP
sequences that minimize expected errors and circuit depth,
yielding high-quality results at the expense of increased
compile time [3], [5].

III. CASE STUDY: MAPPING THE QFT CIRCUIT
To evaluate mapping effectiveness, we consider a small

but representative benchmark—the 5-qubit Quantum Fourier
Transform (QFT) circuit. This circuit includes multiple two-
qubit gates that span non-adjacent qubits, making it ideal for
testing routing efficiency.

We assume a linear 5-qubit topology:

 −  −  −  − 

The original QFT circuit has no SWAP gates and minimal
depth. After mapping, however, the transformed circuits
exhibit varying degrees of overhead depending on the strategy
used.

TABLE I. COMPARISON OF MAPPING TECHNIQUES

Mapping Technique Circuit Depth SWAP SIZE
Original Circuit 9 0 15
Naive Greedy 65 9 74
SABRE 63 10 68
t|ket> 18 7 22

2203979-8-3315-5678-5/25/$31.00 ©2025 IEEE ICTC 2025

Fig. 1. Visual comparison of transpiled circuits using different mapping
strategies: Original, Naive, SABRE, and t|ket>.

The results of the transpilation are summarized in Table I,
which compares circuit depth, number of SWAP gates and
total gate count across mapping strategies. Figure 1 shows the
visual layout of the circuits resulting from each mapping
method, providing an intuitive comparison of structural
differences. Each SWAP gate is implemented as a sequence
of three CNOT gates(see dashed box). Although SWAPs are
not explicitly visible in Figure 1, they are counted analytically
in Table I.

The following observations can be made from the results:

· Naive mapping introduces the highest overhead due
to the lack of foresight in gate scheduling and
placement.

· SABRE reduces SWAP count and circuit depth
through heuristic gate reordering, but its advantage is
less significant for structurally simple circuits.

· t|ket> produces the most compact and shallow circuit
by modeling both logical structure and hardware noise.

Even for a small circuit, the differences are substantial—
demonstrating up to 71% reduction in circuit depth when
using advanced techniques.

IV. CONCLUSIONS
This study highlights the critical role of circuit mapping in

enabling efficient quantum computation on NISQ devices.
Through a case-based comparison, we showed that intelligent
mapping strategies can substantially reduce circuit depth and
SWAP overhead, directly improving reliability on real
quantum hardware.

Among the techniques evaluated, t|ket> demonstrated the
best overall performance due to its integration of look-ahead
optimization and noise-awareness. While SABRE is
considered effective for many real-world scenarios, our results
indicate that for structurally simple circuits, its advantages
over naive mapping are minimal. Naive mapping, while
conceptually simple, resulted in inefficient circuits and is
unsuitable for near-term quantum systems.

As quantum hardware continues to evolve, we plan to
extend this comparative analysis to more complex circuits,
such as those implementing cryptographic algorithms, and to
conduct further studies on mapping strategies for large-scale
applications.

ACKNOWLEDGMENT
This work was supported by Institute of Information &

communications Technology Planning & Evaluation(IITP)
grant funded by the Korea government(MIST) (<Q|Crypton>,
No.RS-2019-II190033, Study on Quantum Security
Evaluation of Cryptography based on Computational
Quantum Complexity)

REFERENCES

[1] A. Zulehner, A. Paler, and R. Wille, “An Efficient Methodology for
Mapping Quantum Circuits to the IBM QX Architectures,” IEEE
Transactions on Computer-Aided Design of Integrated Circuits and
Systems (TCAD), vol. 38, no. 7, pp. 1226–1236, July 2019.

[2] G. Li, Y. Ding, and Y. Xie, “Tackling the Qubit Mapping Problem for
NISQ-Era Quantum Devices,” in Proceedings of the Twenty-Fourth
International Conference on Architectural Support for Programming
Languages and Operating Systems (ASPLOS), 2019, pp. 1001–1014.

[3] M. Cowtan et al., “On the Qubit Routing Problem,” in Proceedings of
the ACM/IEEE Design Automation Conference (DAC), 2019.

[4] A. J. Kreuzer, M. Soeken, and G. De Micheli, “SABRE: A Scalable
Heuristic for Routing Quantum Circuits,” Quantum Science and
Technology, vol. 6, no. 3, 2021.

[5] Cambridge Quantum Computing, “t|ket> User Manual,” 2022.
[Online]. Available: https://cqcl.github.io/tket/.

[6] IBM Qiskit Documentation, “Qiskit Transpiler and SABRE Routing,”
[Online]. Available: https://qiskit.org/documentation/apidoc/
transpiler.html.

2204

