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Abstract—Noisy Intermediate-Scale Quantum (NISQ) 
computers impose severe architectural constraints that prevent 
direct execution of logical quantum circuits. As a result, 
quantum circuit mapping—transforming ideal circuits into 
hardware-compatible forms—has become a critical task in 
quantum software toolchains. This paper presents a 
comparative study of key mapping techniques, focusing on 
circuit depth, SWAP gate overhead, and fidelity awareness. 
Through a case analysis on a 5-qubit Quantum Fourier 
Transform (QFT) circuit, we demonstrate the performance 
trade-offs of several prominent mapping strategies, including 
naive greedy routing, Qiskit’s SABRE, and CQC’s t|ket>. Our 
findings reveal that mapping technique selection has a profound 
impact on circuit quality and feasibility on real NISQ hardware. 
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I. INTRODUCTION 
Quantum computing hardware has rapidly advanced to the 

NISQ era, where quantum processors comprise tens to 
hundreds of qubits but still suffer from noise, short coherence 
times, and restricted qubit connectivity [1], [2]. Under these 
limitations, quantum circuits designed at a logical level must 
be carefully adapted to the physical layout of a target device. 
This process—known as quantum circuit mapping—is 
essential to make circuits executable while minimizing 
performance degradation [1]. 

A major challenge in mapping arises when a two-qubit 
gate involves qubits that are not adjacent on the hardware 
topology. In such cases, SWAP gates must be inserted to bring 
qubits together, often leading to deeper and noisier circuits [1-
3]. Excessive SWAP usage increases error rates and reduces 
the overall fidelity of computation [2], [3]. 

Various mapping strategies have been proposed to address 
this issue [2-4]. Some employ simple greedy heuristics, while 
others use look-ahead search or error-aware optimization. In 
this study, we compare representative techniques from both 
ends of the spectrum to evaluate their effectiveness in 
minimizing routing overhead and preserving circuit integrity. 

II. QUANTUM CIRCUIT MAPPING TECHNIQUES 
Mapping a logical quantum circuit to NISQ hardware 

typically involves three main steps [4]: 

1. Initial Qubit Placement: Assign logical qubits to 
physical ones. 

2. Routing: Insert SWAP gates where needed to satisfy 
coupling constraints. 

3. Optimization: Reduce gate count or depth through 
commutation and rewriting. 

The quality of mapping significantly affects the circuit’s 
executable fidelity and resource requirements. We now 
describe three representative mapping strategies: 

A. Naive Greedy Mapping 
This method processes gates sequentially and inserts 

SWAP gates whenever two non-adjacent qubits are involved 
in a two-qubit gate. It does not consider future gate 
dependencies or topology optimization, often leading to 
inefficient circuits [1]. 

B. SABRE (SWAP-Based Bidirectional Heuristic) 
SABRE, implemented in IBM’s Qiskit, evaluates multiple 

candidate SWAPs at each step using a cost function that 
estimates future gate costs. It performs a forward-backward 
pass to find near-optimal placements with moderate runtime 
[4], [6]. 

C. t|ket> Mapping 
Cambridge Quantum Computing’s t|ket> employs a look-

ahead search with error model integration. It selects SWAP 
sequences that minimize expected errors and circuit depth, 
yielding high-quality results at the expense of increased 
compile time [3], [5]. 

III. CASE STUDY: MAPPING THE QFT CIRCUIT 
To evaluate mapping effectiveness, we consider a small 

but representative benchmark—the 5-qubit Quantum Fourier 
Transform (QFT) circuit. This circuit includes multiple two-
qubit gates that span non-adjacent qubits, making it ideal for 
testing routing efficiency. 

We assume a linear 5-qubit topology: 

 −  −  −  −  

The original QFT circuit has no SWAP gates and minimal 
depth. After mapping, however, the transformed circuits 
exhibit varying degrees of overhead depending on the strategy 
used. 

TABLE I.  COMPARISON OF MAPPING TECHNIQUES 

Mapping Technique Circuit Depth SWAP SIZE 
Original Circuit 9 0 15 
Naive Greedy 65 9 74 
SABRE 63 10 68 
t|ket> 18 7 22 
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Fig. 1.  Visual comparison of transpiled circuits using different mapping 
strategies: Original, Naive, SABRE, and t|ket>. 

 

The results of the transpilation are summarized in Table I, 
which compares circuit depth, number of SWAP gates and 
total gate count across mapping strategies. Figure 1 shows the 
visual layout of the circuits resulting from each mapping 
method, providing an intuitive comparison of structural 
differences. Each SWAP gate is implemented as a sequence 
of three CNOT gates(see dashed box). Although SWAPs are 
not explicitly visible in Figure 1, they are counted analytically 
in Table I. 

The following observations can be made from the results:  

· Naive mapping introduces the highest overhead due 
to the lack of foresight in gate scheduling and 
placement. 

· SABRE reduces SWAP count and circuit depth 
through heuristic gate reordering, but its advantage is 
less significant for structurally simple circuits. 

· t|ket> produces the most compact and shallow circuit 
by modeling both logical structure and hardware noise. 

Even for a small circuit, the differences are substantial—
demonstrating up to 71% reduction in circuit depth when 
using advanced techniques. 

IV. CONCLUSIONS 
This study highlights the critical role of circuit mapping in 

enabling efficient quantum computation on NISQ devices. 
Through a case-based comparison, we showed that intelligent 
mapping strategies can substantially reduce circuit depth and 
SWAP overhead, directly improving reliability on real 
quantum hardware. 

Among the techniques evaluated, t|ket> demonstrated the 
best overall performance due to its integration of look-ahead 
optimization and noise-awareness. While SABRE is 
considered effective for many real-world scenarios, our results 
indicate that for structurally simple circuits, its advantages 
over naive mapping are minimal. Naive mapping, while 
conceptually simple, resulted in inefficient circuits and is 
unsuitable for near-term quantum systems. 

As quantum hardware continues to evolve, we plan to 
extend this comparative analysis to more complex circuits, 
such as those implementing cryptographic algorithms, and to 
conduct further studies on mapping strategies for large-scale 
applications. 
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