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Abstract— We propose a history-based peer to peer (P2P) 
key management protocol in an Internet of Things (IoT) 
environment. Currently, key management for data encryption 
for secured channels in IoT relies on Public Key Infrastructure 
(PKI), which causes a single point of failure due to data 
sovereignty and centralization issues with certification authority 
(CA). Therefore, we propose a P2P key management protocol 
that utilizes data exchanged in an IoT environment. Our 
protocol features pre-shared key setup for initial authentication 
and efficient P2P key exchange for secure communication 
establishment. The proposed protocol registers data between 
devices in advance when they are not connected to the network, 
and then updates new keys based on the key exchange process 
and communication logs using that data. We implemented a 
prototype at the laboratory level to verify the feasibility of the 
proposed protocol. 

Keywords— Internet of Things(IoT), Peer to Peer(P2P), Key 
Management, History-based, Security   

I. INTRODUCTION 
With the rapid spread of Internet of Things (IoT) 

technology, the number of connected devices is growing 
exponentially. The number of connected IoT devices is 
expected to continue to increase, with over 400 billion IoT 
devices expected to be active worldwide by 2030 [1]. IoT 
devices are used in various applications such as smart homes, 
wearable devices, autonomous vehicles, and industrial IoT, 
continuously collecting and processing sensitive personal 
information such as users' behavior patterns, location 
information, biometric data, and environmental information. 
In this context, our data is transmitted through the edge-cloud 
path, and privacy exposure issues arising during this 
transmission process, as well as the security measures to 
prevent them, are critical. Currently, IoT devices 
communicating over networks are vulnerable to security 
attacks [2]. 

In such large-scale IoT environments, robust security is 
essential to ensure secure communication between devices. In 
particular, device authentication and encryption key 
management are core elements of IoT security, and most 
current IoT systems rely on Public Key Infrastructure (PKI). 
PKI is a proven security framework that uses digital 
certificates to verify device identities and establish secure 
communication channels, and has been widely used in 
traditional Internet environments [3]. However, PKI has 
inherent single failure issues due to the centralization of the 
Certificate Authorities (CA) that issues certificates. If the 
centralized certification authority of a manufacturer or service 
provider is attacked or experiences a failure, all devices 
dependent on that CA are exposed to risk, which can result in 

a serious problem where numerous devices are simultaneously 
exposed to security risks. The centralization of the CA system 
concentrates trust in a relatively small number of entities, 
creating a single point of failure. If the CA is attacked or acts 
maliciously, all encrypted communications of IoT devices 
dependent on it can be decrypted, potentially causing severe 
privacy issues [4][5].  

Furthermore, in PKI, there are still factors that could 
compromise the data sovereignty of individuals and 
organizations. Core security data such as certificate issuance 
history, revocation information, and revocation lists are under 
the control of CA operators, and users cannot fully control 
even the authentication information related to their devices. 
This means that users are unaware if CA analyze their data 
without consent, or if CA provide user data to government 
agencies upon request. In IoT environments, the risk of 
exposing personal data increases significantly. This structure 
causes users to lose autonomy over the security infrastructure 
and fails to guarantee data ownership and control, which are 
essential in the data economy era [6][7]. 

To address these issues, users need to be able to manage 
keys directly without the intervention of central authorities or 
third parties. Therefore, we propose a history-based peer to 
peer (P2P) Key management protocol. The key idea is to 
combine offline pre-shared secrets with accumulated 
communication history, enabling autonomous key 
management without central authorities while maintaining 
forward secrecy 

This paper is organized as follows. In Section 2 reviews 
existing studies. In Section 3 details the pre-shared key setup, 
P2P key exchange and history-based update protocol of the 
proposed protocol. In Section 4 implements the proposed 
protocol as a prototype to verify its feasibility. Finally, In 
Section 5 presents conclusions and future research directions. 

II. RELATED WORK 
In this section review the main approaches to P2P key 

exchange in recent IoT environments. 

Pham and Dang proposed a lightweight authentication 
protocol for D2D-based IoT systems [8]. They implemented 
direct authentication between devices without a server and 
minimized computational overhead using a symmetric key. 
However, this approach did not provide a secure method for 
sharing the initial key and lacked a mechanism for updating 
the key once set, increasing security risks over extended use.  

Zheng et al. proposed a P2P IoT authentication protocol 
utilizing PUF (Physical Unclonable Function) [9]. They 
achieved secure authentication without a server by generating 
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unique keys using the unique physical characteristics of 
hardware. However, this approach requires special hardware 
with built-in PUF chips, making it impractical for the 
numerous existing IoT devices already deployed. 

Khalid et al. proposed a distributed lightweight 
blockchain-based authentication mechanism for IoT [10]. 
While they removed central authority using blockchain, this 
approach requires each IoT device to act as a blockchain node, 
which is an unrealistic resource requirement. Additionally, 
transaction delays and energy consumption issues make it 
unsuitable for real-time IoT environments. 

Therefore, existing approaches suffer from either practical 
deployment challenges, such as special hardware 
requirements and excessive resource demands, or 
fundamental security limitations in key management. This 
paper proposes a practical P2P key management protocol that 
addresses these issues through offline pre-shared key setup 
and history-based key updates. The proposed approach 
operates solely through software without additional hardware, 
making it applicable to all IoT devices. 

III. PROPOSED METHOD 
In this section we provide a detailed describes the target 

environment and the History-based P2P Key management 
protocol. 

 
Fig. 1. Target Environment 

A. Target Environment  
Fig. 1 shows the target environment of the proposed 

protocol. Each IoT device is connected to a P2P network, and 
a smartphone acts as a hub. During initial setup, all devices 
must set a secret key (SK) when they are first launched. When 
setting up the first device, the user enters the SK directly. 
Subsequently, all devices must enter the same SK set on the 
first device. This secret key is known only to the user and is 
consistently used during the initial connection of all devices 
owned by the user. The format of the SK can be set as desired 
by the user. The first connection between devices must be 
established only in the initial state without a network 
connection. when a device connects to another device for the 
first time, it shares three pieces of information: the SK, the 
connection request time, and the location information at the 
time of the connection request. Therefore, if the user 
remembers the SK set on the first device, they can add an 
unlimited number of devices. 

The table in Fig. 1 shows the three pieces of information 
stored by each device. The initial data field contains the SK 
shared by all devices. These three pieces of information are 
not the keys used for actual communication encryption. They 
are used as authentication means to exchange secure random 

session keys between devices. For example, when a 
smartphone and a wearable device communicate for the first 
time, they select two of the following three pieces of 
information SK, Time (T), and Location Information (LI) 
encrypt them and exchange them through a series of 
procedures to safely exchange a new random session key and 
authenticate each other. Subsequent actual data 
communication is encrypted using the exchanged random 
session key. At this point, the sender transmits the encrypted 
message along with the current time and location information, 
and the receiver stores this in a log. For example, when a drone 
transmits data collected at a specific time and location to a 
smartphone, the smartphone records T, LI, and Data as 
communication records. During key update, the devices select 
one of the accumulated communication records and set it as 
the new Ti, LIi, and Datai. This process accumulates 
communication records with each communication and 
periodically renews them, enabling the security context to 
evolve dynamically. Therefore, the initial three pieces of 
information are used only for the first key exchange, and 
subsequent communication records transmitted from each 
device continuously strengthen security. 

B. Pre-shared Key Setup 
The setup process consists of two steps. In the first step, 

each device stores the SK entered by the user during initial 
startup in a secure storage location. This key must be entered 
identically on all user-owned devices and serves as the trust 
root for all subsequent security operations. The second step is 
the security connection setup process performed when two 
devices with the same SK first encounter each other. The 
devices first confirm that the network connection is 
completely blocked, then establish a direct connection via 
Device to Device (D2D) such as Bluetooth or Wi-Fi Direct. 
Once the connection is established, the two devices perform 
mutual authentication using the pre-shared SK. This protocol 
assumes a trusted environment, so the SK is exchanged 
directly at this stage to verify that it matches. If the SK 
matches, each device generates the current time and location 
information and exchanges it with the other device. The T and 
LI generated at this point are unique values for the specific 
device pair and are completely independent of connections 
between other device pairs. For example, values generated in 
the connection between devices A and B are unrelated to 
values generated in the connection between devices B and C. 
After selecting one of the values generated by both sides or 
determining the final value through an agreed-upon method, 
each device stores the SK, T, and LI along with the other 
device's identifier in the security context of the connection. 
This process provides several key security features. Network 
isolation blocks remote attacks at their source. All 
initialization tasks are performed without an internet 
connection, preventing remote attackers from interfering with 
the initial setup process. The most vulnerable initial setup 
stage is restricted to attackers with physical access. Mutual 
authentication prevents spoofing attacks. Two devices must 
have the same SK to establish a secure connection, making it 
impossible for attackers to impersonate legitimate devices.  

A new T and LI are generated each time a connection is 
established, preventing the reuse of connection information 
from past connections with other devices. This allows users to 
manage all security parameters directly without the 
involvement of other authentication authorities, thereby 
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securing sovereignty over the data they create. Each device 
pair maintains an independent security context, providing 
isolated security zones that prevent the spread of a breach 
from one connection to another, minimizing the impact of 
attacks and enhancing the overall resilience of the system. 
This setup is automatic, requiring no user intervention beyond 
the initial SK entry, and the physical proximity requirement 
for D2D communication provides an additional layer of 
security without causing inconvenience in everyday use. As a 
result, users only need to remember and manage a single SK, 
while T and LI are automatically generated during connection. 
This design effectively balances strong security and 
practicality, enabling scalable and secure device management 
in personal IoT environments.  

C. P2P Key Exchange 
 

 
Fig. 2. P2P Key Exchange Protocol Example 

Fig. 2 shows the key exchange process between a 
smartphone and a drone in a sequence diagram. For clarity, the 
encryption method has been simplified to XOR, and mutual 
authentication and key exchange are performed in five steps 
according to the Challenge-Response paradigm. The 
smartphone acts as the Initiator, which starts communication, 
and the drone acts as the Responder, which responds to the 
Initiator's request. 

In the first step of the protocol, the smartphone randomly 
selects two pieces of information from the pre-shared SK, T, 
LI and performs encryption. After that, the drone 
receives C1 and calculates all possible combinations using the 
three keys shared with the smartphone to find the pair that 
matches C1. Only authorized devices possess the same three 
keys, so only pre-registered devices can correctly interpret C1. 
The drone identifies the unused key, generates the encryption 
key RR using that key, and transmits it as C2. The smartphone 
receives C2, decrypts it using the unused key, and obtains the 
drone's encryption key RR. Next, the smartphone generates its 
own encryption key RI, encrypts it using the recently 
obtained RR, and sends it to C3. The key point of this process 
is that each message is encrypted based on information 
exchanged in the previous step. This means that each step of 
the protocol is logically connected, preventing a man-in-the-
middle attacker from arbitrarily inserting or modifying 
messages. The last two steps of the protocol involve mutual 
verification through a challenge-response mechanism. The 
drone generates a random challenge value V, encrypts it 
with RR, and sends it to C4. The smartphone decrypts it to 
obtain V, re-encrypts it with RI, and responds with C5. The 

drone verifies that the decrypted result of C5 matches the 
original V to confirm that the smartphone holds the correct RI. 

Algorithm 1a: P2P Key Exchange - Initiator 
Input: (SK, T, LI)  
Output: (RI, RR) or FAIL  
1: keys ← [SK, T, LI]  
2: (K1, K2) ← RandomSelect(2 from keys)   
3: C1 ← K1 ⊕ K2  
4: Send(C1)  
5: C2 ← Receive(timeout)          // Wait for responder's key  
6: if C2 = NULL then  
7:     return FAIL  
8: end if  
9: unusedKey ← keys – {K1, K2}  
10: RR ← C2 ⊕ unusedKey  
11: RI ← GenerateRandom()  
12: C3 ← RI ⊕ RR  
13: Send(C3)  
14: C4 ← Receive(timeout)        // Receive challenge  
15: if C4 = NULL then  
16:     return FAIL  
17: end if  
18: V ← C4 ⊕ RR  
19: C5 ← V ⊕ RI  
20: Send(C5)  
21: if VerificationSuccess() then  
22:     SecureStore(PeerID, RI, RR)  
23:     return (RI, RR)  
24: else  
25:     return FAIL  
26: end if 

 

Algorithm 1a defines the actions performed by the initiator 
in the key exchange for establishing secure channel 
communication. The initiator randomly selects two of the 
three keys it owns and performs encryption to generate C1. 
This random selection generates different values for each 
session to prevent replay attacks. For example, if the first 
session uses the T and LI pair, the next session will include the 
SK combined with either the T or LI. After receiving C2, the 
initiator decrypts C2 using the unused key to extract the 
respondent's encryption key RR. This process includes a 
timeout to prevent infinite waiting, and if no response is 
received, FAIL is returned. This demonstrates the efficiency 
of immediately identifying the correct decryption key using 
pre-shared information. Subsequently, it generates its own 
encryption key RI, encrypts it using the recently obtained RR, 
and transmits it as C3. This ensures the confidentiality of RI 
and implicitly verifies that the responder successfully 
decrypted the initial challenge. The final step is challenge-
response verification. Upon receiving C4, the initiator 
decrypts it using RR and then re-encrypts it using its 
own RI before responding. This mutual verification process 
proves that both parties possess the correct keys. If 
verification succeeds, the protocol stores the encryption keys 
and peer IDs of both parties for use in subsequent secure 
communications. If the process fails, the connection attempt 
is terminated, ensuring that only authenticated connections are 
established. 
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Algorithm 1b defines the tasks performed by the responder 
in the key exchange for establishing secure channel 
communication. The responder waits to receive the initial 
challenge signal C1 from the initiator. Upon receiving C1, the 
responder searches all possible combinations of its three keys 
to identify the key pair used to generate C1. This process 
functions as an authentication mechanism because only 
devices that possess the exact pre-shared key can successfully 
identify the combination. Once the key pair is identified, the 
responder determines which key is unused and generates its 
own encryption key RR. It then uses this key to encrypt RR and 
send it to C2. This process ensures that only the legitimate 
initiator, who knows the original key, can decrypt RR. After 
receiving C3, the responder decrypts it with RR to extract the 
initiator's encryption key RI. This implicitly confirms that the 
initiator has correctly received and processed RR, providing 
mutual authentication without the need for additional message 
exchanges. Finally, a challenge-response mechanism is used. 
The responder generates a random challenge value V, encrypts 
it with RR, and sends it to C4. Upon receiving the response C5, 
it is decrypted using RI, and the result is verified to match the 
original challenge. This proves that the sender possesses the 
correct RI and has successfully completed the key exchange. 
If verification succeeds, the responder stores both encryption 
keys along with the peer ID and sends a confirmation response 

before returning the key pair. Any failure during this process 
results in immediate termination, maintaining the security 
integrity of the system. This design ensures that both parties 
have mutually authenticated each other and established 
separate encryption keys for bidirectional secure 
communication. 

D. History-based key update 
 

 
Fig. 3. History-based key update Example 

 Fig. 3 shows the key update process between a smartphone 
and a drone as an example. This mechanism is performed 
within the existing secured channel and utilizes past 
communication records as new security parameters. When 
communicating through the secured channel, the sender 
constructs a message that includes the current timestamp and 
location information along with the actual data, then encrypts 
the entire message. Specifically, the message structure 
consists of a header containing timestamp and location 
information, followed by the data payload, and the complete 
message is encrypted as M = Encrypt(Message). The receiver 
decrypts the message, extracts the timestamp and location 
information from the header, and stores them along with the 
received data in a log table. The key point is that both the 
sender and receiver use the same timestamp and location 
values from the message header to create their respective logs. 
This ensures that both devices maintain fully synchronized 
communication records, which serve as the basis for mutual 
verification during future key updates.  

 Key updates can be initiated by either device. The device 
requesting the update selects an arbitrary record from the log 
table and transmits two of the three elements. This incomplete 
information serves as a knowledge proof mechanism, 
prompting the other device to provide the missing third 
element. The receiving device searches its log table based on 
the two received elements. If the communication partner is 
legitimate, it will have the same record and extract the missing 
third element from the matching entry to respond. If the 
received value matches the original value held by the requester, 
it is proven that both devices share the same communication 
record. If verification succeeds, a session termination message 
is transmitted, and both devices update the key table with the 
communication record TLog, LILog, and DataLog as the new 
security context, replacing the three values that originally 
includes SK. Subsequent communications re-establish the 
secure connection using the updated parameters. If 
verification fails, the protocol is immediately terminated, and 
no key update is performed. This mechanism utilizes past 

Algorithm 1b: P2P Key Exchange - Responder 
Input: (SK, T, LI)  
Output: (RI, RR) or FAIL  
1: keys ← [SK, T, LI]  
2: C1 ← Receive(timeout)        // Wait for initial challenge  
3: if C1 = NULL then  
4:     return FAIL  
5: end if 
6: (K1, K2) ← SearchKeyPair(C1, keys)  
7: if no match found then  
8:     return FAIL  
9: end if 
10: unusedKey ← keys - {K1, K2}  
11: RR ← GenerateRandom() 
12: C2 ← RR ⊕ unusedKey  
13: Send(C2)  
14: C3 ← Receive(timeout)     // Wait for initiator's key  
15: if C3 = NULL then  
16:     return FAIL  
17: end if 
18: RI ← C3 ⊕ RR  
19: V ← GenerateRandom()  
20: C4 ← V ⊕ RR  
21: Send(C4)  
22: C5 ← Receive(timeout)  
23: if C5 = NULL then  
24:     return FAIL  
25: end if 
26: V' ← C5 ⊕ RI  
27: if V' = V then  
28:     SecureStore(PeerID, RI, RR)  
29:     SendACK()  
30:     return (RI, RR)  
31: else  
32:     return FAIL  
33: end if 
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communication records, preventing external attackers from 
predicting or forging records, and ensures diversity by 
selecting different records for each update. Periodic key 
updates minimize the risk of long-term key exposure, and 
devices can autonomously enhance security without 
additional authentication infrastructure. In particular, as 
communication records accumulate, the number of update 
options available increases, improving security over time. 

IV. IMPLEMENTATION 
This section describes the actual implementation and 

experimental environment of the proposed protocol. 

 
Fig. 4. Test Environment 

 The proposed protocol was implemented in C language to 
verify its feasibility. The experimental environment used a PC 
(Intel i7-12700, 32GB RAM) running Ubuntu 22.04 as the 
requester and a Raspberry Pi 4 as the responder, with the two 
devices directly connected via an Ethernet cable as shown in 
Fig. 4. This configuration is intended for laboratory-level 
verification, using basic XOR encryption operations, with the 
aim of demonstrating that the proposed protocol can be 
implemented in a real environment. 

 
Fig. 5. Requester(PC) 

 
Fig. 6. Responder(Raspberry Pi 4) 

Fig. 5 shows the protocol execution process on the 
requester side. In the initialization phase, the requester selects 
two of the three shared values and performs an XOR operation 

on them. In Fig. 5, LI and KEY are selected. The calculated 
result is sent to the responder, and the requester then waits for 
a response. The highlighted area indicates the random number 
received from the responder, which serves as the basis for 
generating the subsequent session key.  

Fig. 6 shows the responder's response process. The 
responder analyzes the received XOR value and successfully 
identifies TIME as an unused value. This confirms that the 
protocol's core mechanism of finding unused values is 
functioning correctly. The responder generates its own 
random number for exchange with the requester and 
successfully extracts the other party's random number, as 
shown in the highlighted section. Both parties perform 
additional Challenge-Response verification using the 
exchanged random numbers. The “Challenge verified 
successfully” message appears on the requester's side, and the 
verification value is correctly decrypted and displayed on the 
responder's side, confirming the completion of the protocol. 
This implementation demonstrates that the proposed protocol 
enables secure key exchange even with encryption using only 
lightweight XOR operations.  

 
Fig. 7. Key Update 

 Fig. 7 shows the execution of the history-based key update 
protocol. The requester (PC, left) selects log index 4, which 
contains the timestamp “2025-01-15 19:30:10,” location 
“Paris” and data “Mission status update” from the 
communication history. Upon receiving the update request, 
the responder (Raspberry Pi 4, right) successfully finds the 
matching entry in the synchronized log table. Both parties 
verify that they share the same communication history by 
confirming the data match. The highlighted section shows that 
all three shared values T, LI and Data have been successfully 
updated on both sides. This proves that the protocol 
effectively performs dynamic key update and provides 
forward secrecy by utilizing past communication records 
without additional key exchange overhead. The synchronized 
update demonstrates the protocol's ability to maintain a 
consistent security context between resource-constrained 
devices using only communication history data. 

V. CONCLUSIONS 
We propose a history-based P2P key management 

protocol for IoT environments. This protocol does not rely on 
central infrastructure and enables dynamic key updates by 
utilizing shared communication history between devices. By 
using only lightweight XOR operations and maintaining 
synchronized log tables, our approach provides forward 
secrecy and mutual authentication suitable for IoT 
environments. The implementation was carried out in C 
language, and experimental verification through direct 
Ethernet connection between a PC and Raspberry Pi 4 
confirmed the feasibility of the protocol at the laboratory 
level.   
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In further study, we plan to expand the protocol, which is 
currently limited to single-user devices, to enable the 
establishment of secure channels between different users. 
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