979-8-3315-5678-5/25/$31.00 ©2025 IEEE

History-based P2P Key Management Protocol for
IoT Environments

Hyeon Ho Lee Won Seok Choi Seong Gon Choi
Information & Communication Information & Communication Information & Communication
Engineering Engineering Engineering

Chungbuk national university
Chungju-si, South Korea
hh19438@cbnu.ac.kr

Abstract— We propose a history-based peer to peer (P2P)
key management protocol in an Internet of Things (IoT)
environment. Currently, key management for data encryption
for secured channels in 10T relies on Public Key Infrastructure
(PKI), which causes a single point of failure due to data
sovereignty and centralization issues with certification authority
(CA). Therefore, we propose a P2P key management protocol
that utilizes data exchanged in an IoT environment. Our
protocol features pre-shared key setup for initial authentication
and efficient P2P key exchange for secure communication
establishment. The proposed protocol registers data between
devices in advance when they are not connected to the network,
and then updates new keys based on the key exchange process
and communication logs using that data. We implemented a
prototype at the laboratory level to verify the feasibility of the
proposed protocol.

Keywords— Internet of Things(loT), Peer to Peer(P2P), Key
Management, History-based, Security

I. INTRODUCTION

With the rapid spread of Internet of Things (IoT)
technology, the number of connected devices is growing
exponentially. The number of connected IoT devices is
expected to continue to increase, with over 400 billion IoT
devices expected to be active worldwide by 2030 [1]. IoT
devices are used in various applications such as smart homes,
wearable devices, autonomous vehicles, and industrial 10T,
continuously collecting and processing sensitive personal
information such as users' behavior patterns, location
information, biometric data, and environmental information.
In this context, our data is transmitted through the edge-cloud
path, and privacy exposure issues arising during this
transmission process, as well as the security measures to
prevent them, are critical. Currently, IoT devices
communicating over networks are vulnerable to security
attacks [2].

In such large-scale IoT environments, robust security is
essential to ensure secure communication between devices. In
particular, device authentication and encryption key
management are core elements of IoT security, and most
current [oT systems rely on Public Key Infrastructure (PKI).
PKI is a proven security framework that uses digital
certificates to verify device identities and establish secure
communication channels, and has been widely used in
traditional Internet environments [3]. However, PKI has
inherent single failure issues due to the centralization of the
Certificate Authorities (CA) that issues certificates. If the
centralized certification authority of a manufacturer or service
provider is attacked or experiences a failure, all devices
dependent on that CA are exposed to risk, which can result in

Chungbuk national university
Chungju-si, South Korea
choiws@cbnu.ac.kr

2190

Chungbuk national university
Chungju-si, South Korea
choisg@cbnu.ac.kr

a serious problem where numerous devices are simultaneously
exposed to security risks. The centralization of the CA system
concentrates trust in a relatively small number of entities,
creating a single point of failure. If the CA is attacked or acts
maliciously, all encrypted communications of IoT devices
dependent on it can be decrypted, potentially causing severe
privacy issues [4][5].

Furthermore, in PKI, there are still factors that could
compromise the data sovereignty of individuals and
organizations. Core security data such as certificate issuance
history, revocation information, and revocation lists are under
the control of CA operators, and users cannot fully control
even the authentication information related to their devices.
This means that users are unaware if CA analyze their data
without consent, or if CA provide user data to government
agencies upon request. In IoT environments, the risk of
exposing personal data increases significantly. This structure
causes users to lose autonomy over the security infrastructure
and fails to guarantee data ownership and control, which are
essential in the data economy era [6][7].

To address these issues, users need to be able to manage
keys directly without the intervention of central authorities or
third parties. Therefore, we propose a history-based peer to
peer (P2P) Key management protocol. The key idea is to
combine offline pre-shared secrets with accumulated
communication history, enabling autonomous key
management without central authorities while maintaining
forward secrecy

This paper is organized as follows. In Section 2 reviews
existing studies. In Section 3 details the pre-shared key setup,
P2P key exchange and history-based update protocol of the
proposed protocol. In Section 4 implements the proposed
protocol as a prototype to verify its feasibility. Finally, In
Section 5 presents conclusions and future research directions.

II. RELATED WORK

In this section review the main approaches to P2P key
exchange in recent [oT environments.

Pham and Dang proposed a lightweight authentication
protocol for D2D-based IoT systems [8]. They implemented
direct authentication between devices without a server and
minimized computational overhead using a symmetric key.
However, this approach did not provide a secure method for
sharing the initial key and lacked a mechanism for updating
the key once set, increasing security risks over extended use.

Zheng et al. proposed a P2P IoT authentication protocol
utilizing PUF (Physical Unclonable Function) [9]. They
achieved secure authentication without a server by generating

ICTC 2025

unique keys using the unique physical characteristics of
hardware. However, this approach requires special hardware
with built-in PUF chips, making it impractical for the
numerous existing [oT devices already deployed.

Khalid et al. proposed a distributed lightweight
blockchain-based authentication mechanism for IoT [10].
While they removed central authority using blockchain, this
approach requires each IoT device to act as a blockchain node,
which is an unrealistic resource requirement. Additionally,
transaction delays and energy consumption issues make it
unsuitable for real-time IoT environments.

Therefore, existing approaches suffer from either practical
deployment challenges, such as special hardware
requirements and excessive resource demands, or
fundamental security limitations in key management. This
paper proposes a practical P2P key management protocol that
addresses these issues through offline pre-shared key setup
and history-based key updates. The proposed approach
operates solely through software without additional hardware,
making it applicable to all IoT devices.

III. PROPOSED METHOD

In this section we provide a detailed describes the target
environment and the History-based P2P Key management
protocol.

1D Time LI Data -sg—e
2 &} Drone
AMO T, LI, Data, S =
Camera T, LI, Data, 3 1) Otber
Wearable T; LI, p LT
Drone T, LI,
® . @ Wearable
°
T
Q)
‘ Other IoT ‘ T, l LI, - Camera

Smart Phone

Fig. 1. Target Environment

A. Target Environment

Fig. 1 shows the target environment of the proposed
protocol. Each IoT device is connected to a P2P network, and
a smartphone acts as a hub. During initial setup, all devices
must set a secret key (SK) when they are first launched. When
setting up the first device, the user enters the SK directly.
Subsequently, all devices must enter the same SK set on the
first device. This secret key is known only to the user and is
consistently used during the initial connection of all devices
owned by the user. The format of the SK can be set as desired
by the user. The first connection between devices must be
established only in the initial state without a network
connection. when a device connects to another device for the
first time, it shares three pieces of information: the SK, the
connection request time, and the location information at the
time of the connection request. Therefore, if the user
remembers the SK set on the first device, they can add an
unlimited number of devices.

The table in Fig. 1 shows the three pieces of information
stored by each device. The initial data field contains the SK
shared by all devices. These three pieces of information are
not the keys used for actual communication encryption. They
are used as authentication means to exchange secure random

2191

session keys between devices. For example, when a
smartphone and a wearable device communicate for the first
time, they select two of the following three pieces of
information SK, Time (7), and Location Information (L)
encrypt them and exchange them through a series of
procedures to safely exchange a new random session key and
authenticate each other. Subsequent actual data
communication is encrypted using the exchanged random
session key. At this point, the sender transmits the encrypted
message along with the current time and location information,
and the receiver stores this in a log. For example, when a drone
transmits data collected at a specific time and location to a
smartphone, the smartphone records 7, LI, and Data as
communication records. During key update, the devices select
one of the accumulated communication records and set it as
the new T;, LI, and Data;. This process accumulates
communication records with each communication and
periodically renews them, enabling the security context to
evolve dynamically. Therefore, the initial three pieces of
information are used only for the first key exchange, and
subsequent communication records transmitted from each
device continuously strengthen security.

B. Pre-shared Key Setup

The setup process consists of two steps. In the first step,
each device stores the SK entered by the user during initial
startup in a secure storage location. This key must be entered
identically on all user-owned devices and serves as the trust
root for all subsequent security operations. The second step is
the security connection setup process performed when two
devices with the same SK first encounter each other. The
devices first confirm that the network connection is
completely blocked, then establish a direct connection via
Device to Device (D2D) such as Bluetooth or Wi-Fi Direct.
Once the connection is established, the two devices perform
mutual authentication using the pre-shared SK. This protocol
assumes a trusted environment, so the SK is exchanged
directly at this stage to verify that it matches. If the SK
matches, each device generates the current time and location
information and exchanges it with the other device. The T"and
LI generated at this point are unique values for the specific
device pair and are completely independent of connections
between other device pairs. For example, values generated in
the connection between devices A and B are unrelated to
values generated in the connection between devices B and C.
After selecting one of the values generated by both sides or
determining the final value through an agreed-upon method,
each device stores the SK, T, and LI along with the other
device's identifier in the security context of the connection.
This process provides several key security features. Network
isolation blocks remote attacks at their source. All
initialization tasks are performed without an internet
connection, preventing remote attackers from interfering with
the initial setup process. The most vulnerable initial setup
stage is restricted to attackers with physical access. Mutual
authentication prevents spoofing attacks. Two devices must
have the same SK to establish a secure connection, making it
impossible for attackers to impersonate legitimate devices.

A new T and LI are generated each time a connection is
established, preventing the reuse of connection information
from past connections with other devices. This allows users to
manage all security parameters directly without the
involvement of other authentication authorities, thereby

securing sovereignty over the data they create. Each device
pair maintains an independent security context, providing
isolated security zones that prevent the spread of a breach
from one connection to another, minimizing the impact of
attacks and enhancing the overall resilience of the system.
This setup is automatic, requiring no user intervention beyond
the initial SK entry, and the physical proximity requirement
for D2D communication provides an additional layer of
security without causing inconvenience in everyday use. As a
result, users only need to remember and manage a single SK,
while 7 and L/ are automatically generated during connection.
This design effectively balances strong security and
practicality, enabling scalable and secure device management
in personal IoT environments.

C. P2P Key Exchange

] w

Smart phone Drone
(Initiator) (Responder)

(1) Select Keys (2 of 3)

(2) Generate C, (T ~ LI=C)) (3) Send C;

(4) Search Key Table
(5) Generate Random Number Ry

(7) Send C, (6) Generate C, (Rg * SK =C,)
(8) Decrypt C, (C, * SK=Rg)
(9) Generate Random Number R;
10) Generate C " Rg=C.
(10) 3 R Re=Cy) (11) Send
(12) Decrypt C; (C; * Rg=R)
(13) Generate Challenge Value V
(15)Send C, (14) Generate Cy (Rg * V = C,)
(16) Decrypt C4 (C4 * Rg=V)
(17) Generate Cs (R; * V =Cy) (18) Send Cs

(19) Decrypt Cs (Cs ~ Ry=V)

Fig. 2. P2P Key Exchange Protocol Example

Fig. 2 shows the key exchange process between a
smartphone and a drone in a sequence diagram. For clarity, the
encryption method has been simplified to XOR, and mutual
authentication and key exchange are performed in five steps
according to the Challenge-Response paradigm. The
smartphone acts as the Initiator, which starts communication,
and the drone acts as the Responder, which responds to the
Initiator's request.

In the first step of the protocol, the smartphone randomly
selects two pieces of information from the pre-shared SK, T,
LI and performs encryption. After that, the drone
receives C; and calculates all possible combinations using the
three keys shared with the smartphone to find the pair that
matches C;. Only authorized devices possess the same three
keys, so only pre-registered devices can correctly interpret C;.
The drone identifies the unused key, generates the encryption
key Rr using that key, and transmits it as C>. The smartphone
receives C», decrypts it using the unused key, and obtains the
drone's encryption key Rg. Next, the smartphone generates its
own encryption key R;, encrypts it using the recently
obtained Ry, and sends it to Cs. The key point of this process
is that each message is encrypted based on information
exchanged in the previous step. This means that each step of
the protocol is logically connected, preventing a man-in-the-
middle attacker from arbitrarily inserting or modifying
messages. The last two steps of the protocol involve mutual
verification through a challenge-response mechanism. The
drone generates a random challenge value V, encrypts it
with R, and sends it to C,. The smartphone decrypts it to
obtain ¥, re-encrypts it with R;, and responds with Cs. The

drone verifies that the decrypted result of Cs matches the
original V to confirm that the smartphone holds the correct R;.

Algorithm 1a: P2P Key Exchange - Initiator
Input: (SK, 7, L)

Output: (R;, Rr) or FAIL

1: keys « [SK, T, LI]

2: (K}, K;) < RandomSelect(2 from keys)
3:Cr«—K; @ K>

4: Send(Cy)

5: C, «— Receive(timeout)
6

7

8

// Wait for responder's key
1if C; = NULL then
return FAIL
: end if
9: unusedKey <« keys — {K;, K>}
10: Rg « C> @ unusedKey
11: R; < GenerateRandom()
12: C3 «— R[@ RR
13: Send(C3)
14: C4 < Receive(timeout)
15:if C; = NULL then
16: return FAIL
17: end if
18: V C4 @ RR
19:Cs— VD R,
20: Send(Cs)
21: if VerificationSuccess() then
22: SecureStore(PeerID, R;, Rg)
23: return (R, Rgp)
24: else
25: return FAIL
26: end if

// Receive challenge

Algorithm 1a defines the actions performed by the initiator
in the key exchange for establishing secure channel
communication. The initiator randomly selects two of the
three keys it owns and performs encryption to generate C;.
This random selection generates different values for each
session to prevent replay attacks. For example, if the first
session uses the 7'and L/ pair, the next session will include the
SK combined with either the T or LI. After receiving C>, the
initiator decrypts C: using the unused key to extract the
respondent's encryption key Rg. This process includes a
timeout to prevent infinite waiting, and if no response is
received, FAIL is returned. This demonstrates the efficiency
of immediately identifying the correct decryption key using
pre-shared information. Subsequently, it generates its own
encryption key R;, encrypts it using the recently obtained Rg,
and transmits it as Cs. This ensures the confidentiality of R;
and implicitly verifies that the responder successfully
decrypted the initial challenge. The final step is challenge-
response verification. Upon receiving Cy, the initiator
decrypts it using Rgand then re-encrypts it using its
own R; before responding. This mutual verification process
proves that both parties possess the correct keys. If
verification succeeds, the protocol stores the encryption keys
and peer IDs of both parties for use in subsequent secure
communications. If the process fails, the connection attempt
is terminated, ensuring that only authenticated connections are
established.

2192

Algorithm 1b: P2P Key Exchange - Responder

Input: (SK, 7, LI)

Output: (R;, Rg) or FAIL

1: keys « [SK, T, LI]

: C1 < Receive(timeout)

:if C; = NULL then
return FAIL

end if

: (Ky, K») < SearchKeyPair(C, keys)

: if no match found then

return FAIL

:end if

10: unusedKey «— keys - {K;, Kz}

11: Rg < GenerateRandom()

12: C; < Rg @ unusedKey

13: Send(C3)

14: C3 «<— Receive(timeout)

15:if C3 = NULL then

16: return FAIL

17: end if

18: R« C3 @ Rr

19: V « GenerateRandom()

20: C4— V@D R

21: Send(Cy)

22: Cs «— Receive(timeout)

23:if Cs = NULL then

24: return FAIL

25: end if

26: V' —Cs D Rs

27:if V' = V then

28: SecureStore(PeerID, R;, Rp)

29: SendACK()

30: return (R, Rpr)

31: else

32: return FAIL

33: end if

// Wait for initial challenge

// Wait for initiator's key

Algorithm 1b defines the tasks performed by the responder
in the key exchange for establishing secure channel
communication. The responder waits to receive the initial
challenge signal C; from the initiator. Upon receiving C, the
responder searches all possible combinations of its three keys
to identify the key pair used to generate C;. This process
functions as an authentication mechanism because only
devices that possess the exact pre-shared key can successfully
identify the combination. Once the key pair is identified, the
responder determines which key is unused and generates its
own encryption key Rg. It then uses this key to encrypt R and
send it to C,. This process ensures that only the legitimate
initiator, who knows the original key, can decrypt Rz. After
receiving Cs, the responder decrypts it with R to extract the
initiator's encryption key R;. This implicitly confirms that the
initiator has correctly received and processed Rg, providing
mutual authentication without the need for additional message
exchanges. Finally, a challenge-response mechanism is used.
The responder generates a random challenge value V, encrypts
it with Rg, and sends it to Cy. Upon receiving the response Cs,
it is decrypted using R;, and the result is verified to match the
original challenge. This proves that the sender possesses the
correct R; and has successfully completed the key exchange.
If verification succeeds, the responder stores both encryption
keys along with the peer ID and sends a confirmation response

before returning the key pair. Any failure during this process
results in immediate termination, maintaining the security
integrity of the system. This design ensures that both parties
have mutually authenticated each other and established

separate encryption keys for bidirectional secure
communication.
D. History-based key update
] o
o
Smart phone Drone
(Requester) (Responder)
Secured
Channel
(1) Select (Ty,,, LI}, Datay)
from the Log tg;ble ” “l @ Update(Tyg, L1y,,)
(3) Search Log Table
(4) Data,,,
(5) Data match check
(6) End Session

(7) Update Key table
(Tyop LIpog Datay)

Fig. 3. History-based key update Example

Fig. 3 shows the key update process between a smartphone
and a drone as an example. This mechanism is performed
within the existing secured channel and utilizes past
communication records as new security parameters. When
communicating through the secured channel, the sender
constructs a message that includes the current timestamp and
location information along with the actual data, then encrypts
the entire message. Specifically, the message structure
consists of a header containing timestamp and location
information, followed by the data payload, and the complete
message is encrypted as M = Encrypt(Message). The receiver
decrypts the message, extracts the timestamp and location
information from the header, and stores them along with the
received data in a log table. The key point is that both the
sender and receiver use the same timestamp and location
values from the message header to create their respective logs.
This ensures that both devices maintain fully synchronized
communication records, which serve as the basis for mutual
verification during future key updates.

Key updates can be initiated by either device. The device
requesting the update selects an arbitrary record from the log
table and transmits two of the three elements. This incomplete
information serves as a knowledge proof mechanism,
prompting the other device to provide the missing third
element. The receiving device searches its log table based on
the two received elements. If the communication partner is
legitimate, it will have the same record and extract the missing
third element from the matching entry to respond. If the
received value matches the original value held by the requester,
it is proven that both devices share the same communication
record. If verification succeeds, a session termination message
is transmitted, and both devices update the key table with the
communication record Ti.g, Ll and Datai.e as the new
security context, replacing the three values that originally
includes SK. Subsequent communications re-establish the
secure connection using the updated parameters. If
verification fails, the protocol is immediately terminated, and
no key update is performed. This mechanism utilizes past

2193

communication records, preventing external attackers from
predicting or forging records, and ensures diversity by
selecting different records for each update. Periodic key
updates minimize the risk of long-term key exposure, and
devices can autonomously enhance security without
additional authentication infrastructure. In particular, as
communication records accumulate, the number of update
options available increases, improving security over time.

IV. IMPLEMENTATION

This section describes the actual implementation and
experimental environment of the proposed protocol.

Ubuntu 22.04 Ethernet

(Requester)

Raspberry PI 4
(Responder)

Fig. 4. Test Environment

The proposed protocol was implemented in C language to
verify its feasibility. The experimental environment used a PC
(Intel 17-12700, 32GB RAM) running Ubuntu 22.04 as the
requester and a Raspberry Pi 4 as the responder, with the two
devices directly connected via an Ethernet cable as shown in
Fig. 4. This configuration is intended for laboratory-level
verification, using basic XOR encryption operations, with the
aim of demonstrating that the proposed protocol can be
implemented in a real environment.

Selected values: LI and KEY

Unused value: TIME (will be used for decryption)
Sending XOR result to Responder...

Node 1 Response:

=== Processing Key Exchange Response (Step 3) ===

Received encrypted data from Responder

Using unused shared value: TIME

Successfully extracted Responder's randon key using TIME

Responder Randon: 64d58186c96cff672bc300aalddf6f9636bb7413d7c6038b0bbO661330929F5
Generated Requester Random: b96b24e5d8346435a45fa8362968107cad8c161fe4348692bf2575b%e12f19ch
=== Key Exchange Conplete

Ready for encrypted communication.

=== Processing Challenge ===
Received Encrypted Challenge: 31829d723ac78c06563ab2ae785b12ec1aaff59b94c703f5bbd7de658b8b7632

Decrypted Challenge with Responder's key (B): 35571cf4f3ab73017df9b20465847d7a2c148188433b63cdob6cd604b8B25 T
[Extracted Challenge Data: 35571cf4f3ab73017df9b20465847d7a2c148188433b63cdob6cd604b8825Fc]

Encrypted Response with our key (A): 8c3c38112b9F1734d9a61a324cec6d0681989797a70f eS5bad9a3bds9ad4s0c
Challenge response sent back to Responder.

Fig. 5. Requester(PC)

Found match! LI XOR KEY = KEY

Unused shared value: TIME

Generated Responder Random: 04d58186c96cff072bc300aalddf6f9636bb7413d7fc6038bObbO661330929F5
Sending encrypted random to Requester...

rocessing Final Key Exchange (Step 5) ===
Received encrypted Requester random
Successfully extracted Requester Random: b96b24e5d8346435a45fa8362968107cad8c161fed348692bf2575b9e12f19¢ch
=== Key Exchange Complete! ===

=== Starting Challenge Verification ===

Generating challenge value

Generated Challenge: 35571cf4f3ab73017df9b20465847d7a2c148188433b63cd0b6cd604b8825Fc7

Encrypted Challenge with our key (B): 31829d723ac78c06563ab2ae785b12ec1aaff59b94c703f5bbd7d0658b8b7632

challenge sent to Requester for verification.
Waiting for challenge response...

=== Processing Challenge Response ===
Received Encrypted Response: 8c3c38112b9f1734d9a61a324cec6d0681989797a70feS5fbadga3bd59ada60c
Pecrypted Response: 35571ct4f3ab73017df9b20465847d7a2C148188433b63Cd0b6CI60ADBB2STCT]

[Challenge verification SUCCESSFUL!
Fig. 6. Responder(Raspberry Pi 4)
Fig. 5 shows the protocol execution process on the

requester side. In the initialization phase, the requester selects
two of the three shared values and performs an XOR operation

on them. In Fig. 5, LI and KEY are selected. The calculated
result is sent to the responder, and the requester then waits for
a response. The highlighted area indicates the random number
received from the responder, which serves as the basis for
generating the subsequent session key.

Fig. 6 shows the responder's response process. The
responder analyzes the received XOR value and successfully
identifies TIME as an unused value. This confirms that the
protocol's core mechanism of finding unused values is
functioning correctly. The responder generates its own
random number for exchange with the requester and
successfully extracts the other party's random number, as
shown in the highlighted section. Both parties perform
additional Challenge-Response verification using the
exchanged random numbers. The “Challenge verified
successfully” message appears on the requester's side, and the
verification value is correctly decrypted and displayed on the
responder's side, confirming the completion of the protocol.
This implementation demonstrates that the proposed protocol
enables secure key exchange even with encryption using only
lightweight XOR operations.

=== Processing Key Update Request ===
Received request for Time: 2025-01-15 19:30:10, Location: Paris

=== Initiating Key Update Protocol ===
Selected log entry 4:

Time: 2025-01-15 19:30:10

Location: Paris

Data: Mission status update Location: Paris
Key update request sent.

Node 1 Response:

=== Processing Key Update Response ===

Found closest log entry 4:
Tine: 2025-01-15 19:30:10

Received data: Mission status update

Data match found! Updating keys with log entry 4 [New Key: Mission status update
[=== SHARED KEYS UPDATED
New Time: 2025-01-15 Key update response sent.

New LI: Paris

New Key: Mission status update

Fig. 7. Key Update

Fig. 7 shows the execution of the history-based key update
protocol. The requester (PC, left) selects log index 4, which
contains the timestamp “2025-01-15 19:30:10,” location
“Paris” and data “Mission status update” from the
communication history. Upon receiving the update request,
the responder (Raspberry Pi 4, right) successfully finds the
matching entry in the synchronized log table. Both parties
verify that they share the same communication history by
confirming the data match. The highlighted section shows that
all three shared values 7, LI and Data have been successfully
updated on both sides. This proves that the protocol
effectively performs dynamic key update and provides
forward secrecy by utilizing past communication records
without additional key exchange overhead. The synchronized
update demonstrates the protocol's ability to maintain a
consistent security context between resource-constrained
devices using only communication history data.

V. CONCLUSIONS

We propose a history-based P2P key management
protocol for IoT environments. This protocol does not rely on
central infrastructure and enables dynamic key updates by
utilizing shared communication history between devices. By
using only lightweight XOR operations and maintaining
synchronized log tables, our approach provides forward
secrecy and mutual authentication suitable for IoT
environments. The implementation was carried out in C
language, and experimental verification through direct
Ethernet connection between a PC and Raspberry Pi 4
confirmed the feasibility of the protocol at the laboratory
level.

2194

In further study, we plan to expand the protocol, which is
currently limited to single-user devices, to enable the
establishment of secure channels between different users.

ACKNOWLEDGMENT

This work was supported by the Basic Science Research
Program through the National Research Foundation of Korea
(NRF) funded by the Ministry of Education (No. RS-2020-
NRO049604, 100%).

*corresponding author is S.G. Choi(choisg@cbnu.ac.kr).

REFERENCES

[1] S. Sinha, "State of IoT 2024: Number of connected IoT devices
growing 13% to 18.8 billion globally," IoT Analytics, September 2024.
[Online]. Available: https:/iot-analytics.com/ number-connected-iot-
devices/

[2] W.S. Choi, S. Y. Lee, and S. G. Choi, "Implementation and design of
a zero-day intrusion detection and response system for responding to
network security blind spots," Mobile Inf. Syst., vol. 2022, pp. 1-13,
April 2022.

[3] M. El-Hajj and P. Beune, "Lightweight public key infrastructure for the
Internet of Things: A systematic literature review," J. Ind. Inf. Integr.,
vol. 41, September 2024.

[4] D. Diaz-Sanchez, A. Marin-Lopez, F. A. Mendoza, P. A. Cabarcos and
R. S. Sherratt, "TLS/PKI Challenges and Certificate Pinning
Techniques for IoT and M2M Secure Communications," in IEEE
Communications Surveys & Tutorials, vol. 21, no. 4, pp. 3502-3531,
Fourthquarter 2019, doi: 10.1109/COMST.2019.2914453.

[5] J.Hoéglund, S. Lindemer, M. Furuhed, and S. Raza, "PKI4IoT: Towards
public key infrastructure for the Internet of Things," Comput. Security,
vol. 89, February 2020.

[6] Z.Siddiqui, J. Gao and M. Khurram Khan, "An Improved Lightweight
PUF-PKI Digital Certificate Authentication Scheme for the Internet of
Things," in IEEE Internet of Things Journal, vol. 9, no. 20, pp. 19744-
19756, 15 Oct.15, 2022, doi: 10.1109/JI0T.2022.3168726

[7]1 P. Porambage, A. Braeken, P. Kumar, A. Gurtov, and M. Ylianttila,
"Privacy and security for resource-constrained IoT devices and
networks: Research challenges and opportunities," Sensors, vol. 19, no.
9, April 2019.

[8] C.D.M. Pham and T. K. Dang, "A lightweight authentication protocol
for D2D-enabled IoT systems with privacy," Pervasive Mobile
Comput., vol. 74, July 2021.

[91 Y. Zheng, W. Liu, C. Gu and C. -H. Chang, "PUF-Based Mutual
Authentication and Key Exchange Protocol for Peer-to-Peer IoT
Applications," in /[EEE Transactions on Dependable and Secure
Computing, vol. 20, no. 4, pp. 3299-3316, 1 July-Aug. 2023, doi:
10.1109/TDSC.2022.3193570.

[10] U. Khalid, M. Asim, T. Baker, P. Hung, M. Tariq, and L. Rafferty, "A
decentralized lightweight blockchain-based authentication mechanism
for IoT systems," Cluster Comput., vol. 23, no. 3, pp. 2067-2087,
September 2020.

2195

