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Abstract—Non-linearity introduced by from high-power am-
plifiers (HPAs) significantly degrades signal quality in satellite
communication systems. In this paper, we propose a complete
ensemble empirical mode decomposition with adaptive noise
(CEEMDAN)-AI based equalizer for mitigating such non-linear
distortion at the ground station. Specifically, the proposed
equalizer employs the CEEMDAN to decompose the distorted
signal into multiple intrinsic mode functions (IMFs). These IMFs
are served as supplementary input features to the AI-based
equalizer, allowing the model to better capture the distortion
characteristics. Through numerical results, we show that the
proposed method using the long short-term memory (LSTM)
model with IMFs achieves a 31.6% reduction in error vector
magnitude (EVM) and better bit error rate (BER) performance
compared to the baseline and the LSTM without IMFs at all
signal-to-noise ratio (SNR) regimes.

Index Terms—Satellite communications, high-power amplifier,
non-linear distortion, CEEMDAN-AI

I. INTRODUCTION

Satellite communications can provide extensive coverage,
but its performance can be impaired by distortions during
signal transmission [1]. The high-power amplifier (HPA) of-
ten operates in the non-linear region, introducing non-linear
amplitude and phase distortions. This HPA-induced distortion
corrupts the signal constellation, leading to degradation of the
overall bit error rate (BER) at the ground station. Although
various techniques have been studied to compensate for the
non-linearity of HPA [2], conventional techniques often exhibit
limitations in handling its dynamic nature of HPA-induced
distortion.

Recently, AI-based techniques have recently gained atten-
tion for their ability to model non-linear system behavior.
However, existing AI-based studies exploit the distorted signal
directly into the model, which may limit the network’s ability
to learn the complex distortion components. To address this
issue, in this paper, we propose a complete ensemble empir-
ical mode decomposition with adaptive noise (CEEMDAN)-
AI based equalizer that combines signal decomposition with
deep learning at the ground station. Specifically, the proposed
method applies CEEMDAN, a technique well-suited for non-
stationary signal analysis, to decompose the complex distorted
signal into multiple intrinsic mode functions (IMFs).

The distorted signal is then augmented with the extracted
IMFs and fed into a network equalizer to facilitate the learning
of the inverse channel characteristics. Through numerical re-

sults, we show that the proposed method using the long short-
term memory (LSTM) model with IMFs significantly improves
the error vector magnitude (EVM) and BER performance
compared to models trained without IMF features.
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Fig. 1: Constellation diagrams comparing the original signal,
the HPA-distorted signl, and the residual error after CEEM-
DAN processing.

II. SYSTEM MODEL AND THE PROPOSED CEEMDAN-AI
BASED EQUALIZER

In this paper, we consider the satellite link where the non-
linear distortion occurs after HPA at the satellite transmitter.
Using an additive white Gaussian noise (AWGN) channel, the
received signal is affected by both HPA-induced distortion and
noise. The key feature of the proposed method is to apply the
CEEMDAN-AI based equalizer to decompose the distorted
signal into its IMFs [3].

Note that the process of extracting IMFs using CEEMDAN
[3] is as follows. The k-th IMF, IMFk(t), is obtained by
averaging the k-th mode from an ensemble of noise-perturbed
signals, which can be expressed as

IMFk(t) =
1

N

N∑

i=1

EMDk

[
x(t) + wi(t)

]
(1)
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where x(t) is the original signal, wi(t) is the AWGN noise in
the i-th trial, N is the total number of noise-perturbed trials in
the ensemble, and EMDk[·] denotes the EMD operation that
extracts the k-th IMF. This process is repeated for subsequent
residual signals. The sum of all extracted IMFs is given by

K∑

k=1

IMFk(t) = x(t)− rK(t) (2)

where rK(t) is the final residual after the K-th IMF has been
extracted.

After identifying the highest-frequency IMF (i.e., IMF 1),
we discard it and then reconstruct the signal by summing the
remaining IMFs. It is worth noting that this process effectively
filters out noise and high-frequency distortion components
from the signal. In Fig. 1, we compare the constellation
diagram of the original signal, the distorted signal, and the
residual error after CEEMDAN. We observe that the constel-
lation of the HPA-distorted signal is widely scattered due to
the non-linear distortion. After applying the CEEMDAN, the
residual error becomes very small as the highest-frequency
component is removed.

III. NUMERICAL RESULTS AND DISCUSSIONS

In this section, we evaluate the performance of the proposed
CEEMDAN-AI method using the LSTM-based equalizer in
terms of EVM and BER. In our simulation, we consider 8-PSK
signal. We compare the proposed method with the following
two benchmark schemes: 1) a baseline model trained only on
the in-phase and quadrature components and 2) LSTM-based
equalizer without IMFs. In contrast, the proposed method is
trained on an augmented feature set including the real and
imaginary parts of the first five IMFs.

Note that the LSTM model (two layers with a hidden state
size of 64), is trained for 100 epochs using the Adam optimizer
(learning rate = 0.001) with a batch size of 128. It is worth
mentioning that this architecture is effective for capturing
long-range temporal dependencies, such as the memory effect
in distorted satellite signals, due to the LSTM’s recurrent
structure [4].

TABLE I: EVM comparison between the LSTM with and
without IMFs.

Configuration Error vector magnitude (EVM)
LSTM without IMFs 21.00%
LSTM with IMFs (Proposed) 14.37%

In Table I, we compare the LSTM with and without IMFs
in terms of EVM. We observe that the EVM of the proposed
model is reduced from 21.00% to 14.37%, which corresponds
to approximately a 31.6% reduction.

In Fig. 2, we compare the proposed method with two
benchmark schemes in terms of BER. We observe that the
proposed method shows the better BER performance that
two bench mark schemes at all SNR regimes. Note that the
overall gain can be attributed to the LSTM’s strength in
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Fig. 2: BER performance comparison of the LSTM equalizer
with and without IMF features.

processing sequential data, which leverages the time-frequency
characteristics captured by the IMFs to compensate for non-
linear distortions that exhibit memory effects [4].

IV. CONCLUSION

In this paper, we proposed a complete ensemble empiri-
cal mode decomposition with adaptive noise (CEEMDAN)-
AI based equalizer to mitigate non-linear distortion from
HPAs in satellite communications. The key feature of the
proposed method is to employ CEEMDAN to extract IMFs
and use these as supplementary features to an LSTM-based
equalizer. Through numerical results, we showed that the
proposed LSTM model with IMF features achieves a 31.6%
reduction in EVM and shows improved BER performance over
benchmark schemes. As a future direction, it is promising to
verify the model’s generalization performance across diverse
channel conditions, optimize the selection and number of IMF
features, explore lightweight model architectures, and extend
the comparative analysis to other architectures such as Bi-
LSTM and Transformer.
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