A Ka-band Down Converter IC in 65-nm CMOS for LEO-Satellite Payloads

Hongkie Lim

Satellite Payload Research Section

ETRI

Daejeon, South Korea
limhongkie@etri.re.kr

Seong-Mo Moon

Satellite Payload Research Section

ETRI

Daejeon, South Korea

smmoon@etri.re.kr

Dong-pil Chang
Satellite Payload Research Section
ETRI
Daejeon, South Korea
dpjang@etri.re.kr

Abstract—A Ka-band down-converter integrated circuit (IC), implemented in a 65-nm CMOS process, is presented for Low Earth Orbit (LEO) satellite communication payloads. The proposed single-chip solution integrates the complete RF, IF, and LO stages and employs an in-phase/quadrature (I/Q) architecture for image rejection. In the LO path, a transformer-based quadrature coupler is compactly implemented, offering low insertion loss. A passive fourth-order low-pass filter (LPF) is employed for channel selection and spur rejection, and its gain-peaking feature is exploited to enhance wideband IF performance. Simulation results show that the chip operates over the 27.5-30.5 GHz RF band, achieving a peak conversion gain of 14.5 dB and a minimum noise figure (NF) of 8.4 dB. The total chip area, including pads, is 890 $\mu \rm m$ by 880 $\mu \rm m$ with a total power consumption of 46.6 mW.

Index Terms—Frequency converter, RF transceiver, satellite communication, low-pass filter, mixer, CMOS RFIC, Ka-band

I. INTRODUCTION

Low Earth Orbit (LEO) satellite communication is emerging as a next-generation technology that offers wide coverage and high-speed data transmission. In the millimeter-wave (mmWave) bands, phased-array systems with multiple antennas and beamforming techniques are promising solutions to overcome severe path loss [1]. Following the beamformer IC in such systems, a frequency converter is required to down-convert the received RF signal to an IF signal. To minimize size, weight, and power, it is essential to achieve a high level of integration by incorporating all the RF, IF, and LO paths into a single chip [2]. This work presents a fully integrated Kaband down-converter IC designed to interface with a preceding phased-array IC.

II. Frequency Down-Converter Architecture

Fig. 1 illustrates the block diagram of the proposed fully integrated down-converter, fully integrating RF path, LO generation and distribution path, and IF signal processing path. The circuit adopts an I/Q architecture, which enables image rejection and provides flexibility for channel-specific calibration in subsequent digital processing.

This work was supported by a grant from the Institute of Information Communications Technology Planning Evaluation (IITP), funded by the Korean government (MSIT) (No. 2018-0-00190, Development of Core Technology for Satellite Payload).

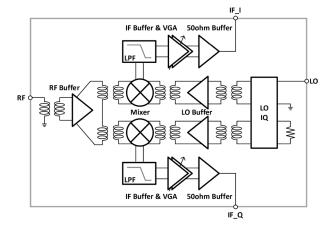


Fig. 1. Block diagram of the proposed frequency down-converter.

In the LO path, quadrature signals are generated using a transformer-based coupler. While RC polyphase filters exhibit significant insertion loss, the transformer-based coupler achieves superior loss performance [3]. Although transformer-based couplers can be area-intensive at lower frequencies, this drawback is alleviated at mmWave frequencies due to frequency scaling. Fig. 2 presents the layout and EM-simulated results of the designed transformer coupler. The compact coupler occupies an area of 170 $\mu m \times 100~\mu m$ and achieves an insertion loss of 0.6 dB, a phase error of less than 1.1°, and an amplitude error below 1 dB at an LO frequency of 25 GHz.

The IF stage integrates a passive fourth-order low-pass filter (LPF) composed of inductors and capacitors. This LPF functions as a channel-selection filter, suppressing out-of-band spurs and wideband noise at the mixer output. In addition, it is designed to exhibit intentional gain peaking near the passband edge, which compensates for high-frequency gain roll-off in the IF amplifiers and thereby extends the IF bandwidth. To maximize integration density and reduce chip area, the IF amplifiers are designed with resistive and active loads, eliminating the need for large on-chip inductors. The LPF's gain-peaking characteristic enables this area-efficient inductorless design while maintaining wideband IF performance.

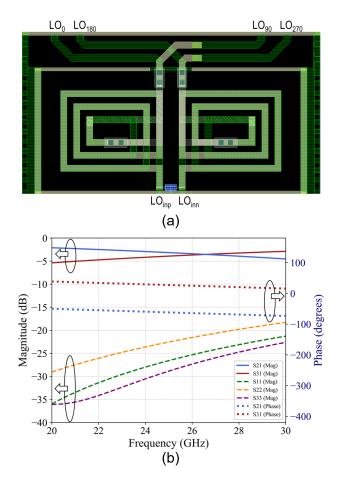


Fig. 2. (a) Layout and (b) EM-simulation results of the transformer-based coupler.

III. SIMULATION RESULTS OF THE DOWN-CONVERTER IC

The proposed down-converter IC is designed by a 65-nm CMOS process. Fig. 3 shows the layout of the chip, which occupies $890 \times 880 \ \mu\text{m}^2$, including all pads. The total power consumption is 46.6 mW from a 1-V supply voltage.

Fig. 4. (a) presents the simulated S-parameters with a fixed LO frequency of 25 GHz. The peak conversion gain is 14.5 dB, and the 3-dB bandwidth covers from 27.5 GHz to 30.5 GHz, with significant rejection of out-of-band signals. The input return loss (S11) is better than -8 dB across the operating band. Fig. 4. (b) shows the simulated noise figure (NF) and the conversion gain versus IF frequency. The 3-dB IF bandwidth of the conversion gain covers from 1.4 GHz to 5.7 GHz. At 4 GHz, the design achieves a minimum NF of 8.4 dB.

IV. CONCLUSION

A fully integrated Ka-band down-converter IC is presented in a 65-nm CMOS process for LEO satellite applications. The proposed IC integrates all RF, IF, and LO functional blocks on a single chip and interfaces with a preceding phased-array IC. A wideband IF performance is achieved by employing a passive LPF with gain peaking. Furthermore, high integration

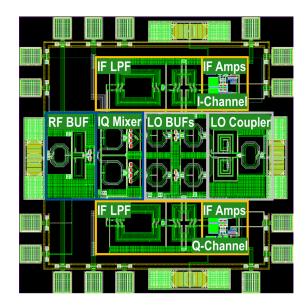


Fig. 3. Chip layout of the proposed down-converter IC.

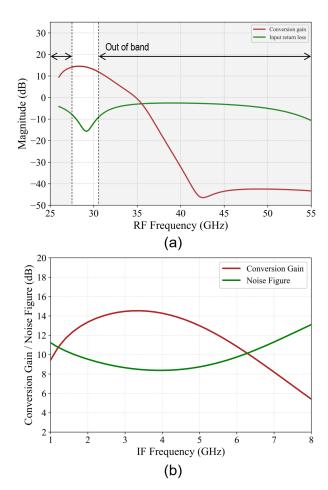


Fig. 4. Simulated performance: (a) conversion gain and input return loss versus RF frequency, and (b) conversion gain and noise figure versus IF frequency.

density is enabled by the area-efficient inductorless IF amplifiers and a compact transformer-based LO quadrature coupler. The simulated wideband IF performance and high integration density validate this design approach, offering competitive performance to other frequency converter ICs [4]–[7].

REFERENCES

- J. Yoo, J. Lim, S. -M. Moon and D. -P. Chang, "A Ka-band 4-Channel Beamforming Transceiver IC for Inter-Satellite Communication Systems," 2024 15th International Conference on Information and Communication Technology Convergence (ICTC), Jeju Island, Korea, Republic of, 2024, pp. 1784-1786.
- [2] L. Gao and G. M. Rebeiz, "A 20–42-GHz IQ Receiver in 22-nm CMOS FD-SOI With 2.7-4.2-dB NF and -25-dBm IP1dB for Wideband 5G Systems," in IEEE Transactions on Microwave Theory and Techniques, vol. 69, no. 11, pp. 4951-4960, Nov. 2021.
- [3] J. S. Park and H. Wang, "A passive quadrature generation scheme for integrated RF systems," 2013 IEEE International Wireless Symposium (IWS), Beijing, China, 2013, pp. 1-4.
- [4] H. . -C. Park et al., "4.1 A 39GHz-Band CMOS 16-Channel Phased-Array Transceiver IC with a Companion Dual-Stream IF Transceiver IC for 5G NR Base-Station Applications," 2020 IEEE International Solid-State Circuits Conference (ISSCC), San Francisco, CA, USA, 2020, pp. 76-78.
- [5] A. Paidimarri et al., "A High-Linearity, 24–30 GHz RF, Beamforming and Frequency-Conversion IC for Scalable 5G Phased Arrays," 2021 IEEE Radio Frequency Integrated Circuits Symposium (RFIC), Atlanta, GA, USA, 2021, pp. 103-106.
 [6] F. Quadrelli et al., "A Broadband 22–31-GHz Bidirectional Image-Reject
- [6] F. Quadrelli et al., "A Broadband 22–31-GHz Bidirectional Image-Reject Up/Down Converter Module in 28-nm CMOS for 5G Communications," in IEEE Journal of Solid-State Circuits, vol. 57, no. 7, pp. 1968-1981, July 2022.
- [7] Y. Wang et al., "A Ka-Band SATCOM Transceiver in 65-nm CMOS With High-Linearity TX and Dual-Channel Wide-Dynamic-Range RX for Terrestrial Terminal," in IEEE Journal of Solid-State Circuits, vol. 57, no. 2, pp. 356-370, Feb. 2022.