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Abstract— In multi-agent systems, task decomposition must 
consider physical constraints, temporal dependencies among 
tasks, and interactions between agents. Decomposing high-level 
natural language instructions into executable multi-agent 
actions is a core component of multi-agent planning systems. In 
this paper, we propose the multi-agent task decomposition 
system (MATDS), which leverages the natural language 
understanding, reasoning, and evaluation capabilities of large 
language models (LLMs) to perform multi-agent task 
decomposition. The MATDS takes high-level task instructions 
provided in natural language as input and decomposes them 
into executable forms that can be carried out by multiple 
agents. The MATDS employs LLMs to iteratively decompose 
high-level tasks through Chain-of-Thought (CoT) reasoning 
and evaluates the decomposition results through a critic 
module to ensure that the generated task plans satisfy 
feasibility and logical consistency. This enables effective task 
decomposition that considers multi-agent execution capabilities 
and parallelism. We conducted experiments on task 
decomposition using the AI2-THOR simulator and 
demonstrated that the MATDS can mitigate errors that may 
occur in few-shot prompting approaches. Overall, MATDS 
provides a flexible and scalable solution for generating and 
refining task decompositions for multi-agent systems. 

Keywords—mmulti-agent, task decomposition, chain of 
thought, reasoning.  

I. INTRODUCTION 
In recent years, multi-agent systems have been rapidly 

expanding across various domains such as logistics 
automation, household service robots, and rescue operations. 
However, for these systems to perform complex tasks in a 
human-like manner, they require high-level natural language-
based task decomposition capabilities that go beyond simple 
command execution. Task decomposition involves 
determining the appropriate sequence of actions while 
considering the abilities of each agent, thereby breaking 
down high-level task instructions into sub-tasks executable 
by multiple agents. 

Early approaches to task planning primarily relied on 
symbolic planning or behavior tree-based structures, which 
are grounded in explicit rule-based policies and state 
transition models. However, these methods require domain 
model modifications whenever new tasks are introduced, and 
they struggle to comprehensively account for task ordering, 
object dependencies, and physical constraints. To address 
these limitations, recent research has focused on task 
decomposition based on large language models (LLMs) [1–
4]. In particular, the Chain-of-Thought (CoT) approach has 
shown effectiveness in solving complex problems through 
step-by-step reasoning [5–7]. 

The objective of this paper is to propose a multi-agent 
task decomposition system (MATDS) that can understand 
complex, natural language-based high-level task instructions 
and decompose them into executable plans, enabling 
multiple agents to effectively accomplish task objectives. 

The remainder of this paper is organized as follows. 
Section II introduces MATDS, Section III presents the 
experiments, and Section IV concludes the paper with final 
remarks. 

II. MULTI-AGENT TASK DECOMPOSITION SYSTEM 
As shown in Fig. 1, MATDS decomposes high-level task 

instructions step by step into detailed execution plans that 
can be carried out by multiple agents, and maintains logical 
consistency by evaluating and refining the generated task 
decompositions. 

 
Fig. 1. Overview of the MATDS Architecture. 

Fig. 1 illustrates the architecture of MATDS, while Fig. 2 
presents the pseudo-code for the operational procedure of 
MATDS. The procedure can be described as follows. First, 
information about agents and objects is extracted from the 
environment, allowing the system to recognize details such 
as the action capabilities of agents and the weights of objects. 
Using the collected environmental information, together with 
a task decomposition prompt for few-shot prompting and the 
high-level task description, an initial prompt is constructed 
for generating multi-agent task decomposition. 

LLMs are then employed to decompose the high-level 
task description into executable tasks that can be carried out 
by multiple agents. To mitigate potential hallucinations in the 
decomposition results generated by the LLMs, reasoning 
based on CoT is applied. The resulting multi-agent task 
decomposition is subsequently evaluated to verify whether it 
satisfies logical consistency and supports parallel execution. 
If the evaluation results are unsatisfactory, the decomposition 
is revised to meet the evaluation criteria, and the evaluation 
process is repeated. Once a satisfactory result is achieved, the 
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system produces a multi-agent task decomposition for the 
given high-level task description.  

 
Fig. 2. MATDS Pseudo-code. 

Finally, the satisfactory multi-agent task decomposition 
result is stored, and the task decomposition prompt is 
updated so that it can be utilized as additional prompt data 
for future multi-agent task decomposition processes. 

III. EXPERIMENTS 
Experiments on task decomposition for high-level task 

instructions using MATDS were conducted in the AI2-
THOR simulator. For the reasoning experiment, the task 
decomposition of “slice the tomato” was performed. Without 
reasoning, the decomposition result appears as shown in Fig. 
3, whereas when reasoning with CoT is applied in MATDS, 
the decomposition result is obtained as shown in Fig. 4 

 
Fig. 3. Task decomposition result without applying reasoning. 

When task decomposition for “slice the tomato” is 
performed without reasoning, as shown in Fig. 5, an error 
may occur during the assignment of decomposed tasks to 
multiple agents. Specifically, the ‘PickupObject('Knife')’ and 
the ‘SliceObject('Tomato')’ may be assigned to different 
agents. In other words, it is possible that 

‘PickupObject('Knife')’ is assigned to agent 1 while 
‘SliceObject('Tomato')’ is assigned to agent 2, leading to a 
failure in completing the high-level task instruction. 

 
Fig. 4. Reasoning Results for Task Decomposition. 

Therefore, as illustrated in Fig. 4, if the number of agents 
required to efficiently execute the high-level task instruction 
is explicitly specified through reasoning after task 
decomposition, such erroneous assignments of sub-tasks 
across multiple agents can be avoided. 

 
Fig. 5. Inability to execute a high-level task when single-agent instructions 

are assigned across multiple agents. 

For the critic experiment, task decomposition was 
performed for the instruction “Slice the lettuce, trash the mug, 
and switch off the light”. Without applying the critic, the task 
decomposition result appears as shown in Fig. 6. Even if the 
sub-tasks are allocated to multiple agents according to the 
efficient number of agents through reasoning, as shown in 
Fig. 7, an error may occur if the task ‘switch off light’ is 
executed first. In such a case, the remaining sub-tasks (‘slice 
lettuce’ and ‘trash mug’) would have to be carried out in 
darkness, leading to incorrect execution. 

By applying the critic to evaluate the execution order, the 
task decomposition was corrected so that the sub-task 
‘switch off light’ is performed only after the other sub-tasks 
have been completed, as shown in Fig. 8. Specifically, the 
decomposition was modified such that the sub-tasks ‘slice 
lettuce’ and ‘trash mug’ are executed in parallel first, 
followed by the execution of the sub-task ‘switch off light’. 
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Fig. 6. Task decomposition result without applying the critic. 

 
Fig. 7. 'Switch off light' executed first, causing 'slice lettuce' and 'trash 

mug' to be performed in darkness. 

 
Fig. 8. Task decomposition result after applying the critic to revise the 

execution order of sub-tasks. 

As observed in the above experiments, the use of few-
shot prompting with LLMs can lead to potential errors. 
However, such errors can be mitigated through CoT 
reasoning and the application of a critic to the generated task 
decomposition results. 

IV. CONCLUSIONS 
In this paper, we proposed MATDS, a system that 

leverages the reasoning and evaluation capabilities of LLMs 
to generate task decompositions from natural language 
instructions that can be executed in parallel by multiple 
agents. MATDS employs reasoning to decompose natural 
language task instructions into detailed execution plans 
suitable for multi-agent execution, and utilizes a critic to 
evaluate and refine the generated decompositions. 
Experiments conducted in the AI2-THOR simulator 
demonstrated that MATDS can correct errors that may arise 
in few-shot prompting approaches. Overall, MATDS 
provides a flexible and scalable system for generating and 
refining task decompositions for multi-agent systems, 
making it applicable to various collaborative multi-agent 
applications. 
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