979-8-3315-5678-5/25/$31.00 ©2025 IEEE

MATDS : Multi-Agent Task Decomposition System
based on LLMs

Joonyoung Jung, Dong-oh Kang
Visual intelligence Research Section
Electronics and Telecommunications Research Institute
Deajeon, Korea
jyjung21@etri.re.kr

Abstract— In multi-agent systems, task decomposition must
consider physical constraints, temporal dependencies among
tasks, and interactions between agents. Decomposing high-level
natural language instructions into executable multi-agent
actions is a core component of multi-agent planning systems. In
this paper, we propose the multi-agent task decomposition
system (MATDS), which leverages the natural language
understanding, reasoning, and evaluation capabilities of large
language models (LLMs) to perform multi-agent task
decomposition. The MATDS takes high-level task instructions
provided in natural language as input and decomposes them
into executable forms that can be carried out by multiple
agents. The MATDS employs LLMs to iteratively decompose
high-level tasks through Chain-of-Thought (CoT) reasoning
and evaluates the decomposition results through a critic
module to ensure that the generated task plans satisfy
feasibility and logical consistency. This enables effective task
decomposition that considers multi-agent execution capabilities
and parallelism. We conducted experiments on task
decomposition using the AI2-THOR simulator and
demonstrated that the MATDS can mitigate errors that may
occur in few-shot prompting approaches. Overall, MATDS
provides a flexible and scalable solution for generating and
refining task decompositions for multi-agent systems.

Keywords—multi-agent,
thought, reasoning.

task decomposition, chain of

[. INTRODUCTION

In recent years, multi-agent systems have been rapidly
expanding across various domains such as logistics
automation, household service robots, and rescue operations.
However, for these systems to perform complex tasks in a
human-like manner, they require high-level natural language-
based task decomposition capabilities that go beyond simple
command execution. Task decomposition involves
determining the appropriate sequence of actions while
considering the abilities of each agent, thereby breaking
down high-level task instructions into sub-tasks executable
by multiple agents.

Early approaches to task planning primarily relied on
symbolic planning or behavior tree-based structures, which
are grounded in explicit rule-based policies and state
transition models. However, these methods require domain
model modifications whenever new tasks are introduced, and
they struggle to comprehensively account for task ordering,
object dependencies, and physical constraints. To address
these limitations, recent research has focused on task
decomposition based on large language models (LLMs) [1—
4]. In particular, the Chain-of-Thought (CoT) approach has
shown effectiveness in solving complex problems through
step-by-step reasoning [5—7].

1757

The objective of this paper is to propose a multi-agent
task decomposition system (MATDS) that can understand
complex, natural language-based high-level task instructions
and decompose them into executable plans, enabling
multiple agents to effectively accomplish task objectives.

The remainder of this paper is organized as follows.
Section II introduces MATDS, Section III presents the
experiments, and Section IV concludes the paper with final
remarks.

II. MULTI-AGENT TASK DECOMPOSITION SYSTEM

As shown in Fig. 1, MATDS decomposes high-level task
instructions step by step into detailed execution plans that
can be carried out by multiple agents, and maintains logical
consistency by evaluating and refining the generated task
decompositions.

Resulls of

Reasoning

Task Description

Task
Decomposition
Plan Generation

Agent Actions

(skdlly

Prompt
Objects Generation

Task
Decomposition
Prompt

Results of
Reasoning

Save Task
Decomposition
Plan

Fig. 1. Overview of the MATDS Architecture.

Fig. 1 illustrates the architecture of MATDS, while Fig. 2
presents the pseudo-code for the operational procedure of
MATDS. The procedure can be described as follows. First,
information about agents and objects is extracted from the
environment, allowing the system to recognize details such
as the action capabilities of agents and the weights of objects.
Using the collected environmental information, together with
a task decomposition prompt for few-shot prompting and the
high-level task description, an initial prompt is constructed
for generating multi-agent task decomposition.

LLMs are then employed to decompose the high-level
task description into executable tasks that can be carried out
by multiple agents. To mitigate potential hallucinations in the
decomposition results generated by the LLMs, reasoning
based on CoT is applied. The resulting multi-agent task
decomposition is subsequently evaluated to verify whether it
satisfies logical consistency and supports parallel execution.
If the evaluation results are unsatisfactory, the decomposition
is revised to meet the evaluation criteria, and the evaluation
process is repeated. Once a satisfactory result is achieved, the

ICTC 2025

system produces a multi-agent task decomposition for the
given high-level task description.

Initial prompt
1: recognize environment
2: agent actions (skill)
3: objects

4: receive high-level task description
5: read task decomposition prompt
6: generate initial prompt

Reasoning
7: read initial prompt
8: for step in CoT-step
9: read n-th CoT prompt
0: execute n-th CoT

11: reasoning task decomposition

Critic
12: while critic-satisfy
13: read critic prompt
14: execute critic
15: if not satisfy the critic
16: update task decomposition

Task decomposition plans
17: generate task decomposition plan
18 : save task decomposition plan
19: update task decomposition prompt

Fig. 2. MATDS Pseudo-code.

Finally, the satisfactory multi-agent task decomposition
result is stored, and the task decomposition prompt is
updated so that it can be utilized as additional prompt data
for future multi-agent task decomposition processes.

III. EXPERIMENTS

Experiments on task decomposition for high-level task
instructions using MATDS were conducted in the AI2-
THOR simulator. For the reasoning experiment, the task
decomposition of “slice the tomato” was performed. Without
reasoning, the decomposition result appears as shown in Fig.
3, whereas when reasoning with CoT is applied in MATDS,
the decomposition result is obtained as shown in Fig. 4

Task : Slice the Tomato.
(Skills Required: GoToObject, PickupObject, SliceObject, PutObject)

SubTask

def slice_tomato():
GoToObject(‘Knife’)
PickupObject(‘Knife”)
GoToObject(‘ Tomato”)
SliceObject(‘Tomato’)
GoToObject(‘CounterTop’)
PutObject(‘Knife’, ‘CounterTop’)

Execute SubTask
slice_tomato()

Task slice the tomato is done

Fig. 3. Task decomposition result without applying reasoning.

When task decomposition for “slice the tomato” is
performed without reasoning, as shown in Fig. 5, an error
may occur during the assignment of decomposed tasks to
multiple agents. Specifically, the ‘PickupObject('Knife')” and
the ‘SliceObject('Tomato')” may be assigned to different
agents. In other words, it is possible that

‘PickupObject('Knife')” is assigned to agent 1 while
‘SliceObject('Tomato')’ is assigned to agent 2, leading to a
failure in completing the high-level task instruction.

**Reasoning: **
Only one agent is needed to perform this task most efficiently,
as each step must be performed in sequence and there is no opportunity for parallelization.

The steps are:

1. Go to the Knife.

2. Pick up the Knife.

3. Go to the Tomato.

4. Slice the Tomato.

5. Go to the CounterTop.

6. Put the Knife back on the CounterTop.

Each action depends on the previous one, and only one agent can hold and use the knife at a
time. Thus, the most efficient number of agents is one.

Fig. 4. Reasoning Results for Task Decomposition.

Therefore, as illustrated in Fig. 4, if the number of agents
required to efficiently execute the high-level task instruction
is explicitly specified through reasoning after task
decomposition, such erroneous assignments of sub-tasks
across multiple agents can be avoided.

Agent 1

Fig. 5. Inability to execute a high-level task when single-agent instructions
are assigned across multiple agents.

For the critic experiment, task decomposition was
performed for the instruction “Slice the lettuce, trash the mug,
and switch off the light”. Without applying the critic, the task
decomposition result appears as shown in Fig. 6. Even if the
sub-tasks are allocated to multiple agents according to the
efficient number of agents through reasoning, as shown in
Fig. 7, an error may occur if the task ‘switch off light’ is
executed first. In such a case, the remaining sub-tasks (‘slice
lettuce’ and ‘trash mug’) would have to be carried out in
darkness, leading to incorrect execution.

By applying the critic to evaluate the execution order, the
task decomposition was corrected so that the sub-task
‘switch off light’ is performed only after the other sub-tasks
have been completed, as shown in Fig. 8. Specifically, the
decomposition was modified such that the sub-tasks ‘slice
lettuce’ and ‘trash mug’ are executed in parallel first,
followed by the execution of the sub-task ‘switch off light’.

1758

Task : Slice the lettuce, trash the mug and switch off the light

SubTask

def slice_lettuce():
GoToObject('Knife')
PickupObject('Knife')
GoToObject('Lettuce')
SliceObject('Lettuce')
GoToObject('CounterTop')
PutObject('Knife', 'CounterTop')

def trash_mug():
GoToObject('Mug")
PickupObject('Mug')
GoToObject('GarbageCan')
PutObject('Mug', 'GarbageCan')

def switch_off light():
GoToObject('LightSwitch')
SwitchOff('LightSwitch')

Parallelize SubTask 1, SubTask 2, and SubTask 3
taskl_thread = threading. Thread(target=slice_lettuce)
task2_thread = threading. Thread(target=trash_mug)
task3_thread = threading. Thread(target=switch_off light)

Start executing all subtasks in parallel
taskl_thread.start()
task2_thread.start()
task3_thread.start()

Wait for all subtasks to finish
taskl_thread join()
task2_thread.join()
task3_thread.join()

Task slice the lettuce, trash the mug and switch off the light is done

Fig. 6. Task decomposition result without applying the critic.

GarbageCan

Agent 1

Agent 2

Fig. 7. 'Switch off light' executed first, causing 'slice lettuce' and 'trash
mug' to be performed in darkness.

Parallelize SubTask 1 and SubTask 2
taskl_thread = threading.Thread(target=slice_lettuce)
task2 thread = threading. Thread(target=trash_mug)

Start executing SubTask 1 and SubTask 2 in parallel
taskl_thread.start()
task2_thread.start()

Wait for both SubTask 1 and SubTask 2 to finish
taskl_thread.join()
task2_thread.join()

Execute SubTask 3 after SubTask 1 and SubTask 2 are complete
switch_off light()

Task slice the lettuce, trash the mug and switch off the light is done

Fig. 8. Task decomposition result after applying the critic to revise the
execution order of sub-tasks.

As observed in the above experiments, the use of few-
shot prompting with LLMs can lead to potential errors.
However, such errors can be mitigated through CoT
reasoning and the application of a critic to the generated task
decomposition results.

IV. CONCLUSIONS

In this paper, we proposed MATDS, a system that
leverages the reasoning and evaluation capabilities of LLMs
to generate task decompositions from natural language
instructions that can be executed in parallel by multiple
agents. MATDS employs reasoning to decompose natural
language task instructions into detailed execution plans
suitable for multi-agent execution, and utilizes a critic to
evaluate and refine the generated decompositions.
Experiments conducted in the AI2-THOR simulator
demonstrated that MATDS can correct errors that may arise
in few-shot prompting approaches. Overall, MATDS
provides a flexible and scalable system for generating and
refining task decompositions for multi-agent systems,
making it applicable to various collaborative multi-agent
applications.

ACKNOWLEDGMENT

This work was supported by Institute of Information &
communications Technology Planning & Evaluation (IITP)
grant funded by the Korea government(MSIT) [No.RS-2022-
11220907, Development of Al Bots Collaboration Platform
and Self-organizing Al]

REFERENCES

[1] J. Wu et al,, “TidyBot: Personalized Robot Assistance with Large
Language Models,” International Conference on Intelligent Robots
and Systems, Detroit, USA, pp. 3546-3553, Oct. 2023.

[2] 1. Singh et al., “PROGPROMPT: Generating Situated Robot Task
Plans using Large Language Models,” International Conference on
Robotics and Automation, London, UK, pp. 11523-11530, May 2023.

[3] J. Liang et al., “Code as Policies: LanguageModel Programs for
Embodied Control,” International Conference on Robotics and
Automation, London, UK, pp. 9493-9500, May 2023.

[4] S. S. Kannan, V. L. N. Venkatesh, and B. Min, “SMART-LLM:
Smart Multi-Agent Robot Task Planning using Large Language
Models, ” International Conference on Intelligent Robots and Systems,
Abu Dhabi, UAE, pp. 12140-12147, Oct. 2024.

[5] Z. Chu et al.,, “A Survey of Chain of Thought Reasoning: Advances,
Frontiers and Future,” Annual Meeting of the Association for
Computational Linguistics, Bangkok, Thailand, pp. 1173-1203, Aug.
2024

[6] C. Mitra, B. Huang, T. Darrell, and R. Herzig, “Compositional Chain-
of-Thought Prompting for Large Multimodal Models,” Conference on
Computer Vision and Pattern Recognition, Seattle, USA, pp. 14420-
14431, Jun. 2024

[77 X. Wang and D. Zhou, “Chain-of-Thought Reasoning without
Prompting,” Conference on Neural Information Processing Systems,
Vancouver, Canada, pp. 66383-66409, Dec. 2024.

1759

