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Abstract—Recent advances are shifting manufacturing from
automation toward fully autonomous, AI-driven systems. Achiev-
ing AI-based autonomous manufacturing demands seamless, real-
virtual integration across all process stages, extending beyond
individual machine control. This study introduces a software-
defined manufacturing framework that combines integrated pro-
cess control with virtual commissioning to enable such end-to-
end coordination. We apply this methodology to an automotive
manufacturing process, demonstrating its effectiveness through
a case study. In the last, future Software-Defined Manufacturing
research issues for the AI-based autonomous manufacturing are
summarized.

Index Terms—Software-Defined Manufacturing (SDM), AI-
based Autonomous Manufacturing, Virtual Commissioning (VC),
Digital Twin (DT), Integrated Process Control

I. INTRODUCTION

In the era of next-generation manufacturing, the industrial
landscape is undergoing a rapid transformation from tradi-
tional automation toward Artificial Intelligence (AI)-based au-
tonomous production. While conventional industrial automa-
tion systems have played a pivotal role in achieving high-
speed mass production, they are increasingly constrained by
the growing demand for product variety and customization.
To overcome the inherent inflexibility of traditional manufac-
turing, industry trends are shifting toward highly adaptable
production systems. This evolution involves the adoption of
flexible manufacturing systems, which integrate automated
machinery with advanced control architectures to efficiently
manage diverse product lines. The incorporation of robotics,
AI, and the Internet of Things (IoT) further enhances system
adaptability, enabling rapid reconfiguration and on-demand
customization in response to dynamic market requirements.

The realization of AI-enabled autonomous manufactur-
ing hinges on three key capabilities: real-time data acquisi-
tion, integrated control across the entire production process,
and simulation-driven prediction and optimization. Software-
Defined Manufacturing (SDM) has emerged as a critical
foundation for these capabilities, enabling software-based
specification, orchestration, and optimization of manufactur-
ing operations [1], [2]. Unlike traditional hardware-centric

systems, SDM shifts the control paradigm toward software-
driven adaptability, facilitating intelligent, reconfigurable, and
autonomous manufacturing environments. Through the conver-
gence of information technology (IT) and operational technol-
ogy (OT), SDM aims to enhance efficiency, productivity, and
quality while minimizing human intervention. Within the SDM
paradigm, Digital Twin (DT) and Virtual Commissioning (VC)
technologies have gained prominence as essential enablers [3],
[4].

A DT is a high-fidelity digital replica of a physical manufac-
turing system, encapsulating its equipment, processes, prod-
ucts, and operating environment. This digital representation
is continuously synchronized with its physical counterpart
through real-time data acquisition from sensors, control sys-
tems, and production databases, ensuring that the virtual model
accurately reflects the current factory state. Once established,
the DT enables systematic variation of environmental and
operational parameters, such as machine operating conditions,
production schedules, or material properties to perform ex-
tensive simulations and predictive analyses. These capabilities
allow the evaluation of system performance, identification of
potential bottlenecks, and validation of optimization strategies
under diverse scenarios, all without disrupting actual opera-
tions. By leveraging DTs, AI algorithms can execute large-
scale simulations and learning processes under conditions
closely approximating real-world scenarios.

VC complements this by providing a methodology for
validating and optimizing control logic, such as programmable
logic controller (PLC) code, within the DT environment. This
approach allows exhaustive testing prior to physical deploy-
ment, thereby reducing commissioning time and mitigating
operational risks. In the context of SDM, where frequent
software-driven reconfiguration is common, VC serves as
a vital safeguard to ensure system stability and functional
integrity.

This paper investigates the role of SDM as a core method-
ology for enabling AI-based autonomous manufacturing and
proposes a real–virtual integrated framework to demonstrate its
applicability. The proposed approach is applied to an automo-
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tive production process, leveraging DT and VC technologies
to validate AI-generated control logic without interrupting
ongoing production. The results highlight tangible benefits,
including reduced commissioning time, enhanced production
flexibility, and data-driven process optimization.

II. RESEARCH BACKGROUND

A. Autonomous Manufacturing

Autonomous manufacturing represents an evolution beyond
the Industry 4.0 smart factory, wherein production systems
autonomously perceive, evaluate, and control their operational
states with minimal human intervention [5]. It is founded on
the convergence of advanced technologies, including artificial
intelligence (AI), DT, robotics, and sophisticated software and
control architectures. This integration supports the transition
from traditional mass production to multi-product, small-
batch manufacturing and mass personalization, enabling rapid
adaptation to fluctuating market demands and frequent product
design changes. While early research efforts predominantly
addressed automation of isolated processes, recent studies have
increasingly focused on the application of AI to dynamic
scheduling and holistic optimization across entire production
lines [6]. Achieving the envisioned paradigm of mass personal-
ization will require continued progress in self-organizing man-
ufacturing systems (SOMS) and the development of human-
centered AI models capable of continuous learning and adap-
tation to support human operators [7].

A significant trend is the shift from centralized control
architectures toward a decentralized autonomous manufactur-
ing paradigm. In this model, individual production entities
communicate and collaborate to respond autonomously to
unpredictable situations [5]. Such a distributed approach
directly aligns with the resilience principles central to the
Industry 5.0 vision. Ultimately, autonomous manufacturing
aims to empower systems to make optimal, independent deci-
sions, thereby redefining efficiency, adaptability, and respon-
siveness in modern industrial operations [5], [6]. Furthermore,
ongoing advancement in DT technologies remains essential,
particularly in providing concrete, domain-specific use cases
that demonstrate clear and measurable benefits in practical
settings [8].

B. Virtual Commissioning

VC is an advanced manufacturing methodology in which
a virtual representation of a physical production system is
created and simulated to test, validate, and optimize control
logic, processes, and operational sequences prior to the instal-
lation or modification of physical equipment [9]. Its growing
importance is closely tied to the increasing complexity and au-
tomation of modern manufacturing [3]. The primary objective
of VC is to minimize production downtime by enabling virtual
validation and optimization, thereby avoiding prolonged line
shutdowns during the integration of new equipment or pro-
cess designs. By verifying operational processes and ensuring
compatibility between new equipment and existing PLCs,
VC significantly reduces troubleshooting time during on-site

Fig. 1. Commissioning configurations of a manufacturing system [10]

commissioning. Furthermore, VC facilitates pre-production
simulations to evaluate equipment utilization, predict produc-
tion capacity, and estimate output potential based on variables
such as production load, workforce availability, and equipment
configuration.

Commissioning in manufacturing systems can generally be
categorized into four configurations as illustrated in Fig.1 [10]:

• Real Commissioning: A real manufacturing system op-
erates with a physical hardware controller and manufac-
turing devices.

• Virtual (Hardware-in-the-Loop) Commissioning: A
simulated manufacturing system operates with a real
hardware controller and virtual manufacturing devices.

• Reality-in-the-Loop Commissioning: A physical man-
ufacturing system operates with a simulated (virtual)
controller and real manufacturing devices.

• Digital Commissioning: A simulated manufacturing sys-
tem operates with both the simulated controller and
virtual manufacturing devices.

Originally focused on verifying PLC control logic, VC has
evolved into a core methodology for validating and integrating
models across the entire system lifecycle, including robotics,
collaborative automation systems, and DT environments [4],
[10]–[13]. This evolution underscores its growing role as an
enabling technology for autonomous manufacturing systems.

Despite these advantages, several limitations of VC have
been noted in the literature. The complexity and cost associ-
ated with high-fidelity model development remain significant
barriers to widespread adoption, particularly for small and
medium-sized enterprises [3], [9]. The effectiveness of VC
depends on access to high-quality, consistent, and accurate
data. However, manufacturers often struggle to collect and
store massive volumes of disorganized historical data from
diverse equipment, and require extensive machine learning
expertise. A significant and often unresolved issue is the
integration of VC solutions with existing legacy enterprise
systems, such as Manufacturing Execution Systems (MES) and
Enterprise Resource Planning (ERP), as well as other diverse
technologies on the factory floor [7].
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C. Software-Defined Manufacturing

SDM represents a transformative paradigm in industrial
automation, drawing conceptual inspiration from software-
defined networking [1]. Fundamentally, SDM seeks to decou-
ple control software from its underlying hardware through an
abstraction layer [14], [15]. This architectural shift is designed
to maximize manufacturing system flexibility and reconfig-
urability, enabling rapid adaptation to dynamic production
demands. By facilitating hardware-independent software de-
sign, SDM promotes reusability and adaptability, reducing the
engineering effort required for future production changes.

The implementation of SDM leverages a suite of advanced
technologies to create a flexible, intelligent manufacturing
environment. AI and machine learning (ML) enable real-time
data analytics, predictive maintenance, quality monitoring,
and process optimization. DT technology supports virtual
simulation, testing, and validation of manufacturing processes
prior to physical deployment, facilitating rapid reconfiguration.
Robotics automate physical operations, while IoT sensors
provide real-time equipment and process monitoring. These
capabilities are supported by robust connectivity, scalable
cloud infrastructures with edge computing, integrated MES,
advanced control software, and comprehensive cybersecurity
measures.

A key enabler of SDM is the adoption of virtualized
PLCs, which execute control logic on commercial off-the-
shelf (COTS) servers rather than dedicated hardware [14].
This approach enables integrated operation of controllers from
multiple vendors on a unified platform, eliminating hardware
dependency and improving resource utilization.

The flexibility inherent in SDM extends to rapid and
dynamic system reconfiguration [16]. By abstracting control
functions into software, manufacturers can adapt production
lines to new product variations or process changes with
minimal physical intervention. New functions and modules
can be introduced during ongoing operations without halting
production. This adaptability is reinforced by real-time oper-
ating systems and advanced virtualization technologies, which
optimize performance for mission-critical control applications
while allowing multiple applications to run independently on
a single platform [1].

Ongoing research in SDM explores integration with cloud-
based control, simulation-driven configuration, and data-
centric optimization methodologies. These developments aim
to enable fully automated system configuration and optimiza-
tion, pushing the boundaries of autonomous, highly adaptable
manufacturing [15].

III. PROPOSED ARCHTECTURE

A. The real-virtual integrated system framework

The real–virtual integrated system framework proposed in
this study for AI-based autonomous manufacturing is orga-
nized into a three-layer architecture: the Service Layer, the
Virtual Layer, and the Physical Layer. The design adheres
to the principles of software-defined manufacturing (SDM)

Fig. 2. Real-virtual integrated system framewor

by clearly decoupling hardware from software and enabling
organic interaction among layers to achieve end-to-end system
autonomy. The proposed framework is illustrated in Fig. 2.

• Physical Layer: This layer comprises all physical assets
within the manufacturing environment, including CNC
machines, industrial robots, collaborative robots, PLCs,
and a variety of sensors deployed on the shop floor. The
Physical Layer executes production tasks according to
control commands issued from the Virtual Layer, while
continuously generating real-time status data for feedback
to higher layers.

• Virtual Layer: Serving as the system’s intelligence core,
this layer integrates three primary components: the DT,
the AI Agent, and the VC module. The DT operates as
a real-time virtual replica of the Physical Layer, captur-
ing equipment states, process flows, and environmental
conditions. The AI Agent leverages this environment to
learn from operational data and derive optimal control
policies. Before deployment, the VC module validates
these AI-generated policies within the DT environment,
ensuring both safety and efficiency prior to execution in
the Physical Layer.

• Service Layer: This layer manages human–system in-
teraction and provides high-level application services.
Key functionalities include process monitoring, predictive
maintenance, visualization of AI-generated optimization
results, and approval workflows for their deployment.
Through these services, operators can effectively oversee,
configure, and supervise the manufacturing process.

B. The Data flow

The data flow within the proposed real–virtual integrated
framework operates in a closed-loop process consisting of
five sequential stages: collect, synchronize, analyze and learn,
verify, and apply, as illustrated in Fig. 3.

In the collect stage, sensor and equipment data from the
Physical Layer are transmitted in real time to the Virtual Layer
via standard industrial communication protocols, such as OPC
Unified Architecture (OPC-UA). The DT receives this data to
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Fig. 3. Data flow of proposed architecture

maintain continuous synchronization with the physical factory.
A virtual model of the manufacturing cell is generated and
updated to reflect any proposed modifications to the physical
station, ensuring that the DT remains an accurate and high-
fidelity representation of the shop floor.

In the analyze and learn stage, the AI Agent processes both
real-time and historical data from the DT to detect operational
issues, such as reduced productivity, process bottlenecks, and
abnormal equipment behavior. Leveraging predictive analyt-
ics, the AI Agent forecasts potential system performance
trends, equipment failures, and production slowdowns, en-
abling proactive intervention. Based on these insights, it learns
and formulates optimal control policies, which may include
robot motion paths, work sequences, and process parameter
adjustments. The DT model itself is continuously refined based
on feedback from AI-driven analysis, ensuring higher fidelity
to the physical system.

In the simulation and verify stage, the generated control
policy is transferred to the VC module, where it undergoes
extensive simulation-based validation. Thousands of virtual
execution cycles are performed to check for potential issues
such as equipment collisions, excessive cycle times, or process
instability.

In the apply stage, only the control policies that have passed
VC validation are deployed to the PLCs and robot controllers
in the Physical Layer. Deployment requires explicit approval
from the Service Layer, which provides a clearly defined and
streamlined approval workflow. This process enhances system
reliability and reduces the likelihood of human error. A rapid
rollback mechanism is also incorporated to restore the system
to a safe, previously validated state in the event of unforeseen
issues following deployment.

Through this cyclical feedback process, the SDM-based
framework iteratively improves its operational performance,
adaptability, and overall efficiency. Moreover, the proposed ar-
chitecture offers several notable advantages. By enabling early
validation and optimization of control policies in the virtual
domain, it significantly reduces commissioning time and min-
imizes unplanned downtime. The clear separation of hardware
and software facilitates rapid reconfiguration of production
lines, supporting multi-product and small-batch manufacturing

Fig. 4. The I/O mapping of the manufacturing process (a) Physical I/O
mapping (b)Virtual I/O mapping

with minimal physical intervention. The integration of AI-
driven analysis with DT and VC enhances decision-making
accuracy, while the closed-loop feedback ensures continuous
system learning and self-optimization. From an operational
point, these capabilities lead to improved resource utilization,
higher production flexibility, and more resilient manufacturing
systems capable of responding effectively to dynamic market
demands.

IV. EXPERIMENTAL CASE STUDY

A. Application of the Proposed Framework

This study demonstrates the applicability of the proposed
real–virtual integrated framework through a case study involv-
ing the automotive Body-in-White (BIW) assembly process.
The BIW stage is one of the major phases in automotive
manufacturing. The complete assembly process begins with
the stamping of sheet metal into body panels, which are
subsequently joined during the BIW stage to form the vehicle’s
rigid, unpainted body shell. The assembled body then proceeds
to the paint shop for multi-layer coating and protective treat-
ments, followed by the General Assembly stage, where the
engine, chassis, interior, electronics, and other components are
installed. The process concludes with comprehensive quality
control and inspection to ensure compliance with performance
and safety standards.

Within the BIW stage, the metal body structure, essentially
the vehicle’s structural skeleton, is constructed from individual
stamped components. The assembly process is highly auto-
mated, involving coordinated sequences of robotic operations
to achieve the required precision, structural integrity, and
durability. Due to frequent product changeovers in modern
automotive manufacturing, flexibility in BIW operations has
become a critical requirement.

In this case study, a DT was developed for the BIW door
assembly cell. The DT includes multiple industrial robots,
collaborative robots, positioning robots, and a PLCs. All
robots are six-axis articulated manipulators, designed for high-
precision welding and handling tasks. Fig.4(a) presents the I/O
mapping of the Physical Layer, while Fig.4(b) depicts its cor-
responding virtual replica used for VC. All robot movements
are controlled through PLCs, and the configuration allows the
results verified virtually through VC to be applied to actual
manufacturing processes.
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Fig. 5. The assembly process of door in BIW

B. Scenario of the Door Assembly Process

We consider a scenario in which the three-axis points
and robot paths for the BIW door assembly are modified to
accommodate the production of two different vehicle types.
Fig. 5 illustrates the sequence of the BIW door assembly
process. Upon arrival of the vehicle body at the assembly cell,
industrial robots prepare various parts required for installation
and perform defect checks on the prepared components. The
correct parts are selected from the available materials, assem-
bled onto the vehicle body, and subsequently inspected to
ensure assembly quality. Even in the same assembly process,
the robots in the actual physical layer must change their
movements to assemble different car types. This sequence
varies according to vehicle type, necessitating distinct robot
motion commands and process parameters for each variant.

The VC environment replicates this process and interfaces
with the Physical Layer, represented by a pilot test line. The
pilot test line is configured to emulate the actual production
environment while utilizing a minimal set of essential equip-
ment. Robot task generation, modification, and process control
are managed within the VC environment, as depicted in Fig. 6.

Fig.6(a) illustrates the AI-driven process for robot code gen-
eration and optimization within the VC, including simulation-
based verification and iterative refinement. Once the optimized
robot task code is finalized, it is transmitted to the Physical
Layer for execution. The updated code is tested in the pilot line
environment, as shown in Fig.6(b). If previously undetected
errors occur during testing, the corresponding robot tasks are
revised within the VC environment and re-deployed to the
Physical Layer.

Fig. 6. Robot Task Generation and Update between VC and Physical Layer:
(a) AI-based Code Generation and Optimization in VC, (b) Robot Task
Execution in the Physical Layer

V. DISCUSSION

This study proposed a real–virtual integrated system frame-
work based on SDM for AI-enabled autonomous manufac-
turing, emphasizing seamless integration between virtual and
physical environments. The framework was validated through
an experimental case study involving the BIW door assembly
process. The approach demonstrated effective integration of
virtual and physical layers for AI-driven robot task generation,
optimization, and execution, without interrupting the actual
production line.

While the proposed framework marks progress toward
practical AI-based autonomous manufacturing, it has several
limitations. The current implementation was restricted to a
specific process within the BIW stage, limiting generalizabil-
ity to other production scenarios. Furthermore, although the
VC environment accurately replicated the target process, its
application was confined to a pilot test line. This restricted
the evaluation of VC scalability and complexity when applied
to full-scale, multi-line production environments.

Advancing AI-based autonomous manufacturing will re-
quire the development of high-performance AI control algo-
rithms capable of handling and optimizing complex production
processes in real time. In the SDM context, AI must evolve
beyond data analysis to deliver autonomous decision-making
and execution capabilities. This includes real-time prediction
of factors affecting productivity and automatic generation of
optimal policies, such as robot trajectories and process se-
quences. For effective human–machine collaboration, research
into explainable AI (XAI) techniques is necessary to make
AI-driven decisions transparent to human operators, along
with the development of intuitive human–machine interfaces.
Where AI anticipates potential equipment failures and au-
tonomously reconfigures or recovers processes Self-healing
systems also represent an important research direction.

In addition, the adoption of standardization technologies and
open architectures will be critical to ensuring seamless interop-
erability among diverse manufacturing systems and solutions.
Ultra–high-fidelity digital twin models, capable of reflecting
even minute changes in physical systems, must be developed
and efficiently updated. Finally, robust cybersecurity mecha-
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nisms are essential to safeguard networked manufacturing en-
vironments, complementing self-healing capabilities to ensure
operational stability in the face of unpredictable disruptions.
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