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Abstract—Traditional perimeter-based security models are
insufficient for securing Industrial Internet of Things (IIoT)
networks, which are inherently dynamic, distributed, and con-
tinually exposed to evolving cyber threats. This study pro-
poses a secure and scalable framework that integrates Zero
Trust (ZT) architecture with PureChain, a custom blockchain
platform designed to enhance IIoT cybersecurity. At the core
of PureChain is a novel Proof of Authority and Association
(PoA2) consensus mechanism, enabling low-latency and energy-
efficient operations. The framework enforces security policies
through smart contracts and evaluates device behavior using
real-time trust scores. An LSTM-based anomaly detection engine
provides proactive threat identification, enabling adaptive and
intelligent security responses. The system is evaluated using two
benchmark IIoT datasets: WUSTL-IIoT-2021 and IoTForge Pro,
and demonstrates superior performance compared to existing
blockchain platforms and consensus mechanisms across key
metrics, including throughput, latency, scalability, energy con-
sumption, and detection accuracy. The results validate that the
proposed PureChain-ZT framework delivers a practical, robust,
and adaptive solution for real-time IIoT security, particularly in
resource-constrained and high-risk industrial environments.

Index Terms—Anomaly Detection, Blockchain, IIoT, PoA2,
PureChain, Zero Trust

I. INTRODUCTION

As cyber threats continue to evolve, traditional perimeter-
based security models are no longer sufficient. These models
assume that internal networks are inherently trustworthy, an
assumption that is increasingly invalid in today’s dynamic
infrastructures, which involve cloud computing, the Internet of
Things (IoT), and the Industrial Internet of Things (IIoT) [1].
The increasing sophistication of attacks and the dynamic
nature of modern infrastructures have exposed the limitations
of these conventional approaches [2]. Therefore, there is a
rising demand for advanced security frameworks that not
only protect against external threats but also address internal
vulnerabilities and enforce security across every layer of the
network [3].

Zero Trust (ZT) has emerged as a solution to these short-
comings by fundamentally challenging the traditional concept
of trust in network security. ZT operates on the principle of
”never trust, always verify,” ensuring that all users, devices,
and services are continuously authenticated and authorized,
regardless of their location within the network. (see Fig-
ure 1) [4]. This approach has been recognized as essential to

Fig. 1: Zero Trust

mitigate the risks associated with data breaches, insider threats,
and unauthorized access [5]. ZT is particularly effective in
environments where the network is no longer limited to the
perimeter but extends to a distributed cloud-based infrastruc-
ture [6].

Blockchain complements ZT by providing decentralized and
immutable data management solutions that can significantly
improve network security [2], [7]. The distributed ledger
system on blockchain ensures the integrity of data and transac-
tions, which makes it an ideal solution to securely log access
attempts, validate user identities, and maintain an immutable
audit trail [8]. Therefore, by incorporating blockchain into
a ZT framework, organizations can further reinforce trust
verification and ensure that security events are recorded in
a tamper-proof manner [2]. Furthermore, the inherent proper-
ties of blockchain, such as transparency, accountability, and
decentralization, address many vulnerabilities in traditional
systems, such as a single point of failure and the potential
for unauthorized data manipulation [9].

This study presents a secure and scalable IIoT framework
by integrating ZT with PureChain, a custom blockchain that
leverages an enhanced proof-of-authority with association
(PoA2) consensus mechanism [10]. In this system, only pre-
validated nodes create and validate blocks, utilizing a multi-
factor scoring system that combines historical performance,
system metrics, and real-time behavioral analysis. This ap-
proach reduces energy use compared to proof-of-work and
improves efficiency validation. The key contributions of this
paper are as follows:

1) We present a framework that integrates ZT with
PureChain, a custom blockchain, to create a secure and
decentralized network for dynamic IIoT, ensuring con-
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tinuous authentication and tamper-proof data logging.
2) A comprehensive evaluation and analysis of PureChain

with Ethereum, Hyperledger, and PoA2 with other con-
sensus mechanisms, offering insights into the perfor-
mance trade-offs in terms of throughput, latency, energy
consumption, and scalability.

3) We provide an extensive performance analysis of the
concept, demonstrating its applicability in real-world
IIoT environments with high scalability, efficiency, and
real-time threat mitigation.

Following Section I is Section II, which reviews the current
literature on blockchain and ZT integration in IIoT. Section III
details the architecture of the proposed framework, which
combines blockchain and ZT, designed to address the chal-
lenges of cyber attacks in securing IIoT systems. Section IV
presents experimental results and performance analysis. Fi-
nally, Section V concludes the paper and outlines future work
directions.

II. BACKGROUND AND RELATED WORK

Industrial IoT enhances operational efficiency through real-
time data, automation, and analytics; however, its growing con-
nectivity introduces significant cybersecurity challenges [11].
In response, researchers have explored ZT, which enforces
continuous verification and context-aware access control. Al-
though several studies have attempted to integrate blockchain
with ZT, they exhibit key limitations. For instance, Awan et
al. [12] proposed a blockchain-based access control system,
but lacked support for real-time threat detection and scalability.
Li et al. [13] introduced BasIoT for identity management in
5G-enabled IIoT but did not address adaptive threat response
or resource limitations.

Similarly, Nie et al. [14] designed a complex ZT model
for 6G-IoT, which is unsuitable for resource-constrained IIoT
devices. Bobde et al. [15] integrated encryption with PoA
consensus, but their approach fell short in scalability and real-
time responsiveness. Nazir et al. [16] proposed a blockchain-
ML framework for collaborative detection, although it remains
largely theoretical. Verma et al. [17] emphasized the potential
of blockchain within ZT but did not validate it within practical
IIoT environments. Collectively, these studies are limited by
their conceptual focus, lack of real-time capabilities, or cloud-
centric assumptions.

This highlights the need for a unified architecture with
low latency, scalability, and energy efficiency for IIoT se-
curity. While machine learning has been explored for threat
detection [18], no solution fully integrates Zero Trust and
blockchain. We introduce PureChain, a blockchain framework
that combines Zero Trust with a novel PoA2 consensus. It
improves throughput, reduces latency and energy consump-
tion, and supports AI-driven anomaly detection and real-time
security enforcement, offering a comprehensive solution for
dynamic IIoT environments.

III. PROPOSED METHODOLOGY

The proposed framework integrates blockchain with ZT
principles to enhance cybersecurity in IIoT systems. As shown
in Figure 2, dynamic trust scores securely stored on the
blockchain govern access control decisions. The blockchain
logs access events and triggers smart contract-based actions,
such as revoking access, updating trust levels, and alerting
administrators. An anomaly detection engine generates risk
signals that feed both the access control and blockchain layers,
ensuring synchronized threat response. The PoA2 consensus
protocol enables fast, reliable validation with low latency and
high data integrity across nodes.

A. BZTF-Based IIoT Cyber Threat Detection Workflow

In the proposed blockchain-based ZT model, access control
enforces the principle of least privilege by dynamically evalu-
ating trust scores. Each device Di, when requesting access
at time t, is assigned a real-time trust score as Ti(t) =
f(Hi, Ci, Ai), where Hi: historical behavior stored immutably
on the blockchain, Ci: current contextual data (IP, location,
time), Ai: anomaly risk score from the anomaly detection
engine. This engine actively monitors system behavior and
raises an alert if it detects suspicious activity. The risk signal
is defined as Ri(t) = ⊮[anomaly detected for Di at time t]
where the indicator function returns 1 if an anomaly is
found and 0 otherwise. However, access control decisions are
enforced using smart contracts. If a device trust score falls
below a threshold τ , the smart contract immediately revokes
access, records the event on the blockchain, and notifies the
system administrator, as specified in Equation 1:

If Ti(t) < τ, then:




Revoke access to Di,

Log event on-chain,
Notify administrator.

(1)

To maintain data integrity, the blockchain employs a consen-
sus mechanism that ensures that all updates are validated and
recorded consistently. The new ledger state Lt is computed
as a function of the previous state Lt−1 and the new data
block ∆t, as Lt = Consensus(Lt−1,∆t). This block includes
updated trust scores and any policy enforcement actions taken
at that time. Together, these components create a decentralized,
intelligent, and adaptive framework for trust management in
IIoT environments. The model leverages a custom blockchain
protocol, called PureChain, to provide secure and automated
policy enforcement according to the ZT principles.

B. Zero Trust Phase

In the ZT phase, access decisions are governed by a
binary function that considers multiple security factors before
granting or denying access. Specifically, access control relies
on the evaluation in Equation 2.

A(u, d, r, t) =

�
1, if P (u, d, r, Ct) = 1 and M(u) = 1,

0, otherwise
(2)
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where A(u, d, r, t) represents the access decision at time t for
1 = allow, 0 = deny. u is the user access request, d is device
used in the request, r is the requested resource. Ct depicts the
contextual data at time t (e.g. location, usage pattern, history),
P (u, d, r, Ct) is the policy function returning 1 if the request
complies with access control rules, and M(u) is the multi-
factor authentication function (1 if verified, 0 if not).

C. Blockchain Phase

In the blockchain phase of the system, each device d is
continuously evaluated and assigned a dynamic trust score
Td(t) ∈ [0, 1], which reflects the behavior of the device over
time. This score evolves based on real-time input from an
anomaly detection engine. The update rule is defined as Td(t+
1) = α ·Td(t)−β ·Ad(t), where Td(t) is the trust score of the
device d at time t, Ad(t) is the anomaly score (1 = anomaly, 0
= normal). α ∈ (0, 1) represent the trust retention coefficient
and β > 0 is the penalty coefficient. The access is automati-
cally revoked if the updated trust score falls below a threshold
θ ∈ [0, 1]. All events, including access requests, anomaly
alerts, and changes in trust score, are permanently recorded
on the blockchain to ensure transparency and accountability.
This as Ti = Hash(Ti−1 + Event Datai + Timestampi). Each
new transaction is cryptographically linked to the previous one,
forming an immutable ledger. The structure of each block is
defined in Equation 3.

H(Bn) = H(Bn−1) +
m∑
i=1

H(Ti) (3)

where H(Bn) represents the hash of the current block,
H(Bn−1) is the hash of the previous block, H(Ti) is the
hash of transaction i and m is the number of transactions in
the block. To maintain low-latency blockchain consistency, the
system utilizes the PoA2 consensus, which combines Proof of
Authority with association-based validation. Smart contracts
autonomously enforce security policies, triggering actions as
per Equation 4 when a device violates rules or its trust score
falls below θ.

SC(x) =

{
1, if x violates policy or Td(t) < θ

0, otherwise
(4)

D. AI-Driven Phase

The LSTM-based anomaly detection model is designed to
process time-series data by capturing both short-term and
long-term dependencies through memory cells. Each memory
cell maintains two critical components: a cell state Ct holds
long-term memory and a hidden state ht provides output for
the current time step. Information flow within the LSTM is
regulated by three types of gates: the forget gate ft controls
how much of the previous cell state is retained. The input
gate it and the candidate cell state C̃t determine the new
information to add to the memory. The updated cell state is
expressed as Ct = ft ⊙ Ct−1 + it ⊙ C̃t, the output gate ot
decides which part of the cell state Ct is passed to the hidden

state ht. The final hidden state ht is used to make predictions
using the softmax function as ŷ = softmax(Wyht+ by), when
an anomaly is flagged, the detection is expressed by Equation
5:

ŷt =

{
1, if score(xt) > θ

0, otherwise
(5)

Here, ŷt represents the predicted label at time t, score(xt) is
the anomaly score for input xt, and θ is a predefined threshold.
A value of 1 indicates an anomaly, while 0 indicates normal
behavior.

IV. PERFORMANCE ASSESSMENT AND DISCUSSION

A. Dataset Description

This study evaluates the proposed PoA2 framework us-
ing two benchmark datasets: WUSTL-IIoT-2021 [19] and
IoTForge Pro [20]. WUSTL-IIoT-2021 includes over 1.19
million labeled IIoT flows across 41 features, with a class
imbalance favoring normal (92%) over primarily DoS attack
traffic (7%). Preprocessing involved min-max normalization
and linear interpolation (Equation 6) to address scaling and
missing values.

x′ =
x− xmin

xmax − xmin
. (6)

IoTForge Pro offers a comprehensive evaluation environment
for IIoT security, encompassing a diverse range of synthetic
and real-world attack types, including ransomware, XSS, and
password attacks, alongside regular traffic. Experiments were
conducted in Python on Google Colab using a 6th-generation
Intel i5-6300U CPU with 4 GB of RAM (Windows 11).
Blockchain operations were simulated via a custom Python
class that appended encrypted client data as blocks.

B. Model Performance

Figure 3 compares the performance of BiLSTM, LSTM,
and CNN models on two IIoT datasets. In IoTForge Pro,
all models perform exceptionally, with metrics above 99.7%.
CNN leads slightly in precision and F1-score, showing strong
detection with low false alarms. On the WUSTL-IIoT-2021
dataset, which is more challenging, LSTM performs best with
a precision of 97.8% and F1-score of 96.4%, followed by
BiLSTM. CNN shows the weakest performance, especially in
recall. Thus, LSTM proves to be the most robust and adaptable
model, making it the best overall anomaly detection model in
both environments.

TABLE I: Training and Inference Times

IoTForge Pro WUSTL-IIoT-2021
Training
Time (s)

Inference
Time (s)

Training
Time (s)

Inference
Time (s)

BiLSTM 10876.0 0.000695 873.99 222.64
LSTM 6276.0 0.000424 727.30 20.28
CNN 1070.0 0.000102 1287.89 20.75

Table I shows that CNN trains fastest on IoTForge Pro
(1070.0s) and has the lowest inference time (0.000102s),
making it ideal for real-time use. BiLSTM trains the slowest
(10876.0s) but still maintains low inference time, while LSTM

1854



Fig. 2: The architecture of proposed AI-driven anomaly detection for IIoT.

Fig. 3: Performance Analysis.

offers a good balance. On WUSTL-IIoT-2021, LSTM trains
fastest (727.30s) and has the shortest inference time (20.28s),
outperforming CNN and BiLSTM. BiLSTM has the highest
inference time (222.64s), making it less suitable for latency-
sensitive scenarios. Hence, LSTM offers the best trade-off
between training and inference time, confirming its practicality
for real-time IIoT anomaly detection.

C. The Blockchain Evaluation

TABLE II: Blockchain Platform Metrics across Datasets

Dataset Platform Throughput Latency Energy Scalability

IoTForge Pro
Ethereum 5.00 0.1997 1520.65 0.5628
Hyperledger 9.94 0.1005 30.48 0.7875
PureChain 16.82 0.0594 12.43 0.8613

WUSTL-IIoT-2021
Ethereum 4.98 0.2010 14.99 0.5748
Hyperledger 10.02 0.0998 298.02 0.7561
PureChain 16.64 0.0601 124.60 0.8854

Table II shows that PureChain outperforms Ethereum and
Hyperledger across all key metrics. It achieves the highest
throughput (over 16 TPS), the lowest latency (around 0.06s),
and strong energy efficiency, especially on the IoTForge
Pro dataset. Hyperledger ranks second in most areas, while
Ethereum consistently lags with the lowest throughput, highest

latency, and inconsistent energy use. PureChain also shows
the best scalability on both datasets. These results highlight
PureChain as the most efficient and scalable blockchain plat-
form for IIoT security applications.

TABLE III: Consensus Mechanism Metrics across Datasets

Dataset Consensus Throughput Latency Energy Scalability

IoTForge Pro

PoA 4.94 0.2100 15.95 1.01
PoS 8.45 0.3415 60.76 0.82
PoW 2.90 2.8697 195.95 0.57
PoA2 7.61 0.08612 5.14 1.47

WUSTL-IIoT-2021

PoA 4.03 0.1626 10.79 1.19
PoS 9.30 0.3623 62.26 0.84
PoW 3.14 1.2023 151.19 0.58
PoA2 6.71 0.0552 5.84 1.45

Table III shows that PoA2 outperforms PoA, PoS, and
PoW across key metrics. While PoS achieves the highest
throughput, PoA2 offers the best overall balance, delivering
the lowest latency (0.0552s), the highest scalability (1.45), and
the lowest energy consumption (5.84 kWh). It also maintains
strong throughput (6.71 TPS), making it suitable for resource-
constrained IIoT environments in real time. These results
position PoA2 as the most efficient and scalable consensus
mechanism for secure integration of IIoT blockchains.

D. The ZTA Evaluation

TABLE IV: Zero Trust Security Model Metrics

Metric IoTForge Pro WUSTL-IIoT-2021
Accuracy (%) 98.69 98.46
Latency (s) 0.42 0.31
Detection Time (s) 0.22 0.25
Resource Utilization (%) 84.68 76.99

Table IV shows that the ZT model performs effectively on
both IoTForge Pro and WUSTL-IIoT-2021 datasets. Accuracy
is high for both (98.69% and 98.46%, respectively), demon-
strating strong generalizability. WUSTL-IIoT-2021 has slightly
lower latency (0.31s), indicating a faster system response,
while IoTForge Pro detects anomalies slightly quicker (0.22s).
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However, IoTForge Pro consumes more resources (84.68%)
compared to WUSTL-IIoT-2021 (76.99%). Overall, IoTForge
Pro offers slightly better detection, but WUSTL-IIoT-2021
is more resource-efficient. Table V shows the comparative
analysis that shows that the proposed model outperforms the
prior threat detection approaches in all key metrics. Although
some existing models such as [13], [14], [16] deliver high
accuracy above 96%, they lack real-time capability and full AI
integration. The proposed model delivers the highest accuracy
99.79%, precision 99.83%, and F1-score 99.87%, while also
supporting real-time detection and complete AI integration.

TABLE V: Performance comparison of threat detection

Ref. Accuracy
(%)

Precision
(%)

F1-Score (%) Real-Time
Support

AI Inte-
gration

[12] 94.76 94.85 94.76 No No
[13] 96.88 96.31 96.58 Partial No
[14] 96.92 96.89 96.92 No No
[16] 96.98 96.13 96.44 No Partial

Proposed 99.79 99.81 99.87 Yes Yes

E. Finding and Implications

PureChain outperforms Ethereum and Hyperledger in terms
of throughput, latency, and energy efficiency across various
datasets. The PoA2 consensus achieves the best balance among
mechanisms, offering high scalability, low energy use, and
fast response compared to PoW, PoS, and PoA. The LSTM-
based anomaly detection model delivers the highest accuracy,
especially on the WUSTL-IIoT-2021 dataset, while main-
taining efficient training and inference. The ZT model also
performs well in constrained environments. Together, PoA2

and PureChain form a scalable, secure, and energy-efficient
foundation for real-time IIoT cybersecurity, integrating decen-
tralized trust, Zero Trust enforcement, and AI-driven anomaly
detection.

V. CONCLUSION

This study presents PureChain, a blockchain-integrating
Zero Trust framework to enhance the security of Industrial IoT.
Utilizing a custom PoA2 consensus mechanism, PureChain
overcomes the limitations of traditional blockchain systems
by improving throughput, latency, scalability, and energy effi-
ciency. The integration of an LSTM-based anomaly detection
engine enables the accurate identification of real-time threats.
Experimental results on the WUSTL-IIoT-2021 and IoTForge
Pro datasets confirm PureChain’s superior detection accuracy,
responsiveness, and resource efficiency. Overall, the synergy
of blockchain, ZT, and AI in PureChain offers a robust,
scalable, and practical solution for securing complex IIoT
infrastructures in real-world deployments.
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