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Abstract—Traffic accidents caused by health-related issues
are difficult to respond to promptly, particularly during long-
duration driving, where risks such as drowsiness and cardio-
vascular abnormalities increase. In this study, we introduce a
multimodal state recognition system capable of detecting drowsi-
ness and health anomalies, using visual and physiological signals
collected from a camera and a PPG sensor. We constructed the
time-series data using frame-level features such as PERCLOS,
MAR, and PPG signals, and compared the performances across
various deep learning architectures, including an attention-based
Transformer model. OQur experiment results shows that the
proposed approach achieves higher detection accuracy compared
to other traditional models. Additionally, the system supports
active intervention through voice alerts and automatic emergency
reporting with GPS location information in hazardous situations.
We implemented the proposed system in a low-cost on-device
environment, which demonstrates its feasibility for real-world
applications.

Index Terms—Drowsiness, multimodality, on-device, real-time

I. INTRODUCTION

Traffic accidents caused by drowsiness and health-related
issues during driving have become a critical social problem [1],
with over 6,300 cases reported annually in South Korea alone.
These incidents not only endanger the driver but also pose
serious risks to surrounding individuals. The risk is particu-
larly high for elderly drivers or those engaged in prolonged
driving, where drowsiness may coincide with cardiovascular
abnormalities. Fig. 1 shows the potential dangers associated
with drowsy driving. However, current vehicle systems face
limitations in rapid emergency response, often due to delays
in sending rescue signals after an incident [2]-[4].

Conventional drowsiness detection systems primarily rely
on camera-based visual cues or basic physiological sensors,
and their functionality is often limited to passive approaches
such as triggering simple audible alarms after detecting signs
of fatigue. Furthermore, given the driving context where

This research was supported in part by Basic Science Research Program
through the National Research Foundation of Korea (NRF) funded by the
Ministry of Education (NRF-2022R111A1A01053915), in part by the MSIT
(Ministry of Science and ICT), Korea, under the National Program for Excel-
lence in SW (2022-0-01077) supervised by the IITP (Institute of Information
& communications Technology Planning & Evaluation) in 2025, and in part
by Ajou University research fund. (Jong-seok Yoon and Youhyeon Choi are
co-first authors.) (Corresponding author: Yiwen Shen.)

1840

Fig. 1. The danger of drowsy driving.

hands-free interaction is essential, current systems lack active
user interaction or multimodal integration.

Several prior works have explored the use of multimodal
approaches in drowsiness detection. Yu et al. employed fa-
cial features, head posture, and PPG signals with LSTM-
based models, forming 10-dimensional fused vectors using
BiLSTM [5]. However, scalability and real-time deployment
remained limited. Du et al. used a late fusion strategy com-
bining PPG and video-based models, but failed to capture
inter-modal correlations [6]. Cao et al. proposed a multimodal
approach using ECG (i.e. Electrocardiogram), EEG (i.e. Elec-
troencephalogram), and EMG (i.e. Electromyography), but
required expensive sensors and complex setups, making them
unsuitable for embedded deployment [7].

Unlike LSTM-based methods that suffer from long-term
dependency loss and limited parallelization, the Transformer
architecture built on attention mechanisms can simultaneously
capture global temporal relationships and is optimized for
parallel processing. While applications of Transformers in
drowsiness detection remain rare, this study explores its fea-
sibility and advantages in an embedded context.

To address these limitations, we propose a multimodal
drowsiness and health anomaly detection system that operates
in a low-cost embedded environment using Jetson Nano and
Raspberry Pi. The system integrates frame-based visual fea-
tures such as PERCLOS (i.e. PERcentage of eye CLOSure)
and MAR (i.e. Mouth Aspect Ratio) with HRV (i.e. Heart
Rate Variability)-based physiological signals acquired via a
PPG (i.e. Photoplethysmography) sensor. These signals are
merged at the feature level using an early fusion strategy and
converted into time-series data. We then apply and compare
multiple deep learning models, including CNN, LSTM, and
Transformer, to identify the optimal architecture for accurate
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and efficient state recognition. The proposed system using
a Transformer-based early fusion model to achieve up to
79.35% accuracy of drowsiness detection. To provide an in-
time notification, we also integrate an alert generation, a
conversational interaction, and a GPS-based reporting function
in a seamless flow for detecting drowsiness of a vehicle driver.
In hazardous cases, the alerting module issues audio alerts
and automatically transmits the driver’s location and state to
a server, significantly reducing emergency response time.
The key technical contributions are summarized as follows:

o In the proposed system, we integrate visual features
(PERCLOS, MAR, EAR) and physiological/biological
signals (PPG) via time-series feature-level early fusion.

o We use the Transformer with 1-D convolution to demon-
strate that the proposed system outperforms other state-
of-the-art models in accuracy.

o We also implement audio alerts and GPS-based automatic
emergency reporting, reducing response time in critical
scenarios.

« For an edge deployment scenario, we develop a on-device
drowsiness detection system using Jetson Nano and Rasp-
berry Pi to demonstrate the real-world applicability.

The rest of this paper is organized as follows. Section II
summarizes and analyzes the current research work about
driving safety. Section III describes the design of our proposed
multimodal drowsiness detection system. Section IV shows
the performance evaluation of the proposed system. Finally,
in Section V, we conclude this paper along with future work.

II. RELATED WORK

For in-vehicle drowsy driver detection, various approaches
have been proposed, including computer vision-based meth-
ods, physiological signal analysis, and multimodal fusion
techniques [7]. Early works primarily focused on single-modal
approaches, such as using facial landmarks or eye-tracking
systems to assess driver alertness. Recent advancements in
deep learning have enabled more sophisticated models that
can leverage multiple data sources for improved accuracy.

For computer vision-based methods, many studies have
utilized facial landmarks and eye-tracking techniques to detect
drowsiness. For example, the MediaPipe Face Mesh model has
been widely adopted for real-time facial landmark detection,
enabling the calculation of metrics like the Mouth Aspect
Ratio (MAR) and Eye Aspect Ratio (EAR) to quantify the
degree of mouth opening and eye closure [8]. These metrics
have been shown to correlate with drowsiness levels, making
them effective indicators for fatigue detection.

For physiological signal analysis, approaches have focused
on monitoring heart rate variability (HRV), electroencephalo-
gram (EEG) signals, and other biometric indicators [6]. These
signals can provide insights into the driver’s mental state
and alertness levels. Recent studies have explored the use
of wearable devices to continuously monitor these signals,
allowing for real-time assessment of drowsiness.

For multimodal fusion techniques, researchers have be-
gun to combine visual and physiological signals to enhance
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Fig. 2. System architecture of the proposed multimodal drowsiness detection
system.

drowsiness detection accuracy. For instance, some studies have
integrated facial landmarks with HRV features to create a more
comprehensive model that captures both visual and physiolog-
ical indicators of fatigue [2]. However, many existing systems
still rely on traditional LSTM or CNN architectures, which
may not fully leverage the potential of attention mechanisms
for long-term dependency capture.

Different from these approaches, our proposed method uti-
lizes a Transformer-based architecture that inherently captures
long-range dependencies and relationships between different
modalities. This allows for more effective integration of visual
and physiological signals, leading to improved drowsiness
detection performance.

III. SYSTEM DESIGN

In this section, we describe the design of our proposed on-
device multimodal drowsiness detection system. The system
is designed to operate in a low-cost embedded environment
using Jetson Nano and Raspberry Pi, integrating visual and
physiological signals for real-time drowsiness detection. A
conceptual system architecture is shown in Fig. 2, which
includes the following main components: (1) visual feature
extraction using facial landmarks, (2) physiological signal
processing using PPG and HRYV features, (3) a deep learning-
based drowsiness detection model, (4) a conversational inter-
action module for drowsiness mitigation, and (5) an emergency
response function for critical situations.

A. Facial Landmarks

The state of the mouth and eyes of the face was quan-
titatively analyzed using the MediaPipe Face Mesh model.
This model provides a total of 468 face landmarks, of which
a subset corresponding to the mouth and eyes was selected
to calculate the Mouth Aspect Ratio (MAR) and Eye Aspect
Ratio (EAR) that quantify the degree of opening and closing
of the mouth and the degree of closing of the eyes.

The MediaPipe Face Mesh is a lightweight deep learning-
based model that has real-time performance and high accuracy,
and can reliably extract landmarks even in various environ-
ments. Through this, it was possible to stably collect the
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Fig. 3. Facial landmarks for mouth.

dynamic feature sequence of the mouth and eyes over time
from camera images.

MAR was calculated to extract the features of the mouth,
which is defined as the average distance between the top
and bottom landmarks of the mouth divided by the distance
between the left and right landmarks of the mouth, as shown
in Fig. 3. MAR is used to quantify the degree to which
the mouth is opened in real time. Since the mouth structure
varies from person to person, the baseline MAR was set
for each individual by collecting data in the state of mouth
opening for a certain period of time, and the relative MAR
increase rate was calculated based on this to determine whether
yawning was present. The frequency of yawning within a
certain period of time, for example, the number of yawns per 5
minutes, was used as the main index for determining fatigue
rather than single yawning. Yawning duration was excluded
from the analysis due to large individual differences and low
discrimination power.

The degree of eye closure was measured through EAR,
which is defined as the ratio of the average vertical length
of the eye divided by the horizontal length. Fig. 4 shows the
landmarks used to calculate EAR. If the EAR falls below a
specific threshold, it is judged that the eyes are closed. In
addition, PERCLOS, the rate at which the eyes were closed
for a certain period of time, and the duration of the closing
between the eyes and the reopening were extracted together
and used as fatigue indicators. Excluding short blinkers, only
meaningful closing was reflected in the analysis.

Since the features extracted from the mouth and eyes have
a time series shape that changes over time, a model structure
that combines a one-dimensional convolutional neural network
(CNN), a recurrent neural network (e.g., LSTM), and an
attention mechanism was designed to deal with this. For each
structure, a one-dimensional CNN was applied to extract char-
acteristic patterns and reduce noise, and the extracted feature
maps were combined to form one integrated feature vector.
This integrated sequence was then entered into the LSTM
layer to learn the gradual accumulation of time dependence
and fatigue, and the attention mechanism allowed high weights
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Fig. 4. Facial landmarks for eyes.

to be given at critical points for sleepiness judgment.

All MAR and EAR values were normalized and used
as rates of change relative to individual reference values,
not absolute values. Through this, it was possible to more
accurately reflect changes in patterns without being affected
by individual physiological differences or basic conditions.

Finally, a model for binary classification of drowsiness was
constructed based on the LSTM and the output of the attention
structure. A cross entropy loss function was used for learning,
and model performance was evaluated through accuracy of the
detection.

B. PPG and HRV Features

In this study, for the detection of drowsiness based on
physiological signals, ECG data of the DROZY dataset [9]
were used to extract HRV (Heart Rate Variability) features
that are used for model learning. HRV is a representative
biomarker that reflects the activity state of the autonomic
nervous system and is known to be effective in quantitatively
tracking physiological changes such as drowsiness.

Since the DROZY dataset provides ECG-based RR interval
information [10], the several HRV features were calculated
based on the information, as shown in Table I. HRV gener-
ally includes various analysis indicators divided into a time
domain, a frequency domain, and a nonlinear domain, and in
this study, time and frequency domain features were mainly
used.

First, in the time domain analysis, features capable of
grasping the overall variability and short-term change in heart
rate intervals were extracted. Typically, SDNN represents
the standard deviation of the entire NN interval (normal to
normal interval) and represents the overall variability of the
autonomic nervous system. RMSSD refers to the square root
of the mean difference squared between two consecutive heart
rate intervals, which is mainly interpreted as a measure of
parasympathetic nervous activity. NN50 and pNN50 represent
the number and overall ratio of cases where the difference
between the two RR intervals is more than 50 ms, and also
reflects the effect of the parasympathetic nervous system.
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TABLE I
SUMMARY OF THE MAIN HRV FEATURES EXTRACTED FROM THE DROZY DATASET

Feature Description Time Domain | Frequency Domain
SDNN Standard deviation of NN intervals v
RMSSD Root mean square of successive differences v
NN50 Number of pairs of successive RR intervals differing by more than 50 ms v
pNN50 Proportion of NN50 to total number of RR intervals v
LF Low frequency power (0.04-0.15 Hz) v
HF High frequency power (0.15-0.4 Hz) v
LF/HF Ratio of LF to HF power v

In the frequency domain analysis, the time series data of
the RR interval was converted into a power spectrum through
a frequency analysis (such as a Fast Fourier Transform or
Welch method) and the power value of a specific frequency
band was calculated. Among them, low frequency (LF) (0.04-
0.15 Hz) reflects the complex reaction of sympathetic and
parasympathetic nerves, and high frequency (HF) (0.15-0.4
Hz) mainly represents the activity of parasympathetic nerves.
The LF/HF ratio is an index that quantifies the balance state
of the autonomic nervous system and tends to show a clear
pattern of changes according to the drowsiness state.

The window configuration for HRV feature extraction is as
follows. A fixed window of 5 minutes is generally used in
standard HRV analysis, but in this study, the entire session for
a total of 9 to 10 minutes was divided using sliding windows
at regular intervals (e.g., 5 minutes window of a 30-second
movement interval) to match the composition and consistency
of DROZY data, and HRV features were calculated for each
section. As a result, it was possible to construct a sequence of
feature changes over time, which was used as the basis data
for entering the time series learning model.

In the signal preprocessing step, noise removal and outlier
removal were preceded to ensure accurate RR interval extrac-
tion from the ECG signal. In particular, adaptive filtering and
range-based outlier removal algorithms were applied to detect
noise, errors, and remove artifacts included in the signal. Since
the quality of the RR interval directly affects the accuracy of
HRV analysis, the corresponding preprocessing process was
regarded as an essential step to secure the reliability of HRV
features.

The HRV features derived in this way are integrated into
multimodal input along with visual features and used as
physiological signal-based input of the fatigue state prediction
model. Physiological signals provide information complemen-
tary to visual signals, so that improved drowsiness detection
performance can be expected compared to a single modality-
based model.

C. Conversations Stimulation

Fatigue or drowsiness that occurs while driving causes
attention loss, reaction time delay, cognitive processing ability,
etc., and is pointed out as one of the main causes of traffic
accidents. In particular, in a monotonous and repetitive driving
environment, the level of arousal of the driver gradually
decreases, thereby increasing the risk of an accident. Thus,
the proposed system provides a drowsiness mitigation function

that presents a simple conversation and language game based
on natural language so that a driver may recover his or her
arousal state without external stimulation after detecting such
a drowsiness state in real time.

Related studies have shown that conversations with digital
assistants while driving are effective in relieving drivers’
drowsiness and inducing cognitive arousal. A study analyzed
that when a driver had a conversation with a digital interactive
agent, they showed better lane keeping, faster response to
dangerous situations, and increased distraction range, which
was associated with an overall improvement in attention span.
The study also reported that drivers’ levels of drowsiness
during conversations decreased, and their efforts to stay awake
were also reduced.

In a similar context, another study [11] confirmed that
cognitive stimulation through language-based games or con-
versations significantly reduced drivers’ fatigue and sleepiness
indicators in a 20-30-minute fatigue state. In particular, the
study experimentally demonstrated that simple conversation
and response-inducing questions alone can achieve fatigue re-
covery and attention-switching effects, suggesting its potential
for use in autonomous driving technology and driver assistance
systems.

Therefore, the drowsiness mode processing function of
this system is a way to provide active cognitive stimulation
beyond simple warning sounds, and only short interactions can
contribute to relieving drowsiness and restoring the driver’s
cognitive arousal.

D. Emergency Response Function

When the driver’s condition exceeds a certain standard and
deteriorates, a simple drowsy warning alone cannot prevent
the accident. To compensate for this, the system determines
the user’s condition as an emergency situation and performs
an immediate response procedure when a certain condition is
satisfied.

The emergency assessment condition is set when, for ex-
ample, drowsiness persists for a certain period of time (e.g., 1
minute) or when a drowsiness pattern is repeatedly detected.
These criteria refer to the fatigue scoring index used in
other drowsiness detection systems, and the threshold value
considered an emergency if there is no response within a
certain period of time [12]. When an emergency assessment
is made, the system presents a simple voice or text-based
question (e.g., dizziness, chest pain) to the user, attempts to
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Fig. 5. Software stack of the proposed system.

check symptoms, and at the same time obtains the vehicle’s
location information through GPS.

Thereafter, the collected user response and location in-
formation are transmitted to the server and recorded, and
are transmitted in real time to a guardian or acquaintance
registered in advance by the user. In addition, when there
is no response from the user or when it is determined that
the symptom is urgent, the report is automatically made to
an emergency medical institution (e.g., 119 or 911). This
automation structure is an important function for securing
golden time for emergency response, and is being applied in a
similar form in systems for elderly drivers, and the importance
of early intervention is repeatedly emphasized in the medical
community.

If the user’s consciousness is restored, the system automat-
ically returns to the normal operation mode, otherwise repeat-
edly checking the user’s condition and continuing monitoring
until emergency rescue is made.

IV. PERFORMANCE EVALUATION

In this study, various experiments were conducted to verify
the performance of the drowsiness detection model using
visual information and physiological signals. Fig. 5 shows the
software stack, and Fig. 6 shows the overall implementation
of the proposed multimodal drowsiness detection system.

First of all, the data used in the experiment consist of the
DROZY dataset, which includes facial landmarks extracted
from camera images, especially coordinate information of
the mouth and eyes, and PPG or ECG-based HRV signals
containing heart rate variability information. The label for
drowsiness was based on annotations provided in the dataset,
and in some cases, RMSSD, LF/HF ratio, or EEG-based
indicators derived from HRV were used as labels.

The feature extraction process was divided into two modal-
ities: visual information and physiological signals. In visual
information, after extracting face landmarks by applying Me-
diaPipe Face Mesh, MAR and EAR values were obtained
through the calculation of ratios to the mouth and eyes. In
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addition, fatigue-related indicators such as the number of
yawns, the number of eye closures, and PERCLOS were
quantified. Since the dataset is pre-recorded, there was a
limitation that it was difficult to measure the baseline for each
individual user. To compensate for this, a correction procedure
was performed for each user using the average value of the
section classified as normal or through z-score normalization.

In the physiological signal modality, time domain and
frequency domain features such as RMSSD, LF, HF, LF/HF
ratio, and SDNN were extracted from HRYV. Table. I shows the
extracted HRV features. Fig. 7 shows the normal PPG signals
from the dataset, and Fig. 8 shows the real-time PPG signal
collection and the testing environment, which uses a analog-
digital converter with the SPI interface to forward the signal
to the Raspberry Pi 5 board. These features were generated
for each section through a sliding window of a certain length,

1844



SPI Interface

Fig. 8. The real-time PPG signal collection and testing environment.

Confusion Matrix (last Fold)

normal

True label

arrhythmia

T
normal

arrhythmia
Predicted label

Fig. 9. The confusion matrix for detecting arrhythmia from PPG signals.

and were generally based on a section of 30 seconds.

The model structure consisted of a multi-step processing
process. First, visual features, i.e., MAR, EAR, and related
figures, were processed through a one-dimensional (1-D)
CNN, and HRV features were also input to a separate 1-D
CNN to extract characteristics. After that, the feature vectors
obtained from the two modalities were combined into one,
and the temporal dependence was learned by inputting them
into the LSTM layer. In the last step, the attention mechanism
was applied to give weight to the point of time when the
contribution to determining whether or not to sleepiness was
high, and binary classification was finally performed.

In the experimental process, the dataset was divided into
training, verification, and test sets, and a K-fold or subject-
wise split was applied for cross-validation. In addition, the
classification accuracy for each class was visually analyzed
through the confusion matrix, as shown in Fig. 9.

A comparative experiment was also conducted in paral-
lel. Through this, the performance difference among differ-
ent models was evaluated. Table II shows the performance
of the transformer-only, the LSTM-only structure, and the
Transformer with 1D convolution model. From the results,
it was confirmed that the Transformer model showed better
performance than the LSTM model, and when 1D convolution

TABLE II
PERFORMANCE COMPARISON OF DIFFERENT MODELS

Model Accuracy
Transformer-only 59.98%
LSTM-only 53.04%
Transformer + 1D Convolution 79.35%

was added in front of the Transformer, the performance
was improved significantly up to 79.35% of the accuracy to
recognize drowsiness.

V. CONCLUSION

In this paper, we presented the feasibility of a driver condi-
tion monitoring system that effectively integrates multimodal
data (visual + physiological signal) using low-cost embedded
hardware and secures high accuracy performance by applying
a Transformer-based model. One limitation of the current
study is that the performance was evaluated partially on the
Jetson Nano platform due to hardware constraints, and the
real-time performance in actual driving environments was not
fully verified. Future research will further check the real-
time performance and increase the reliability of the system
by securing empirical data in actual vehicle environments.
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