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Abstract—Accurate user mobility prediction is a fundamental
requirement for efficient resource management in 5G networks.
However, the 5G Core (5GC) and the Radio Access Network
(RAN) provide inherently distinct perspectives of mobility, with
the former capturing coarse grained location and access behavior
while the latter records radio level measurements and handover
events. In this work, we construct an integrated dataset by
systematically extracting and standardizing parameters from
the 5GC, the RAN, and their joint integration, in accordance
with 3GPP specifications (TS 23.288, TS 23.273, TS 38.331, and
TS 38.305). The methodology employs Koln mobility traces as
user input and simulates scenarios in NetSim, where logs are
generated separately from each domain and then combined. The
resulting dataset preserves 3GPP compliant semantics, enables
cross-domain validation of mobility events, and provides a unified
foundation for Al-driven mobility prediction and analytics.

Index Terms—5GC, RAN, LCS, UE mobility prediction, Net-
Sim, Koln trace,

I. INTRODUCTION

The fifth-generation (5G) mobile network is designed
to support enhanced Mobile Broadband (eMBB), Ultra-
Reliable Low-Latency Communications (URLLC), and mas-
sive Machine-Type Communications (mMTC), as defined in
the Third Generation Partnership Project (3GPP) specifications
beginning with Release 15. With the increasing service de-
mands and corresponding proliferation of heterogeneous base
stations and network infrastructure, along with the adoption
of diverse frequency bands such as A6G, precise prediction
of user equipment (UE) mobility has emerged as a critical
factor for improving performance across various 5G usage
scenarios. For example, mobility management directly affects
handover performance, session continuity, and Quality of
Service (QoS). Inefficient or delayed handovers may lead to
intermittent connection failure, increased latency, or degraded
throughput, which are critical issues in applications such as
autonomous driving, augmented reality, and mission-critical
communications.

Various studies have highlighted the role of Machine
Learning (ML) in improving mobility prediction. For ex-
ample, Rydén et al. demonstrated that ML-based prediction
of mobility, traffic, and radio channel conditions at the Ra-
dio Access Network (RAN) level can significantly enhance
network performance [1]. Jeong et al. focused on the 5G
Core (5GC) domain and showed that ML-assisted prediction
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Fig. 1: Overview of 5G architecture.

frameworks are able to reduce signaling overhead by up to
75%, underlining the benefits of predictive analytics in session
and control management [2]. Beyond these domain-specific
efforts, Rago et al. proposed a spatiotemporal modeling of
UE dynamics for Cloud-RAN environments, where prediction
of user mobility and channel quality can enable more efficient
resource allocation [3]. To effectively capture network topol-
ogy and user inter-dependencies, Bermudez et al employed
Graph Neural Networks (GNNs) for mobility management in
O-RAN. The authors demonstrated that integrated-domain data
can be effectively used to enable proactive handover decisions
and intelligent link prediction. [4]

While these studies provide strong evidence of the benefits
of mobility prediction within either the RAN or 5GC domains,
they are often limited to domain-specific perspectives. RAN-
level metrics alone cannot capture session-level delays caused
in the 5GC, while 5GC-domain analysis ignores the dynamic
behavior of the radio environment. To overcome this limita-
tion, this paper advocates an integrated domain perspective
that combines RAN and 5GC-level data, in line with 3GPP’s
emphasis on end-to-end mobility optimization in Releases 17
and 18 [5]. By correlating radio layer measurements with
5GC network signaling and transport metrics, the integrated
domain offers a holistic view of mobility. For effective mo-
bility analysis, we utilize NetSim which we further modify to
generate representative datasets and enable a methodology for
extracting and analyzing RAN, 5GC, and integrated domain
data. This work lays the groundwork for future Al-enhanced
mobility prediction and adaptive mobility management in 5G
and beyond.

II. 5G SPECIFICATIONS AND ARCHITECTURE

According to 3GPP specifications, mobility management
in the 5G system requires tight coordination between the
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TABLE I: UE Mobility information collected from 5GC (3GPP TS 23.288, Rel. 18)

’ Information ‘ Source ‘ Description ‘
UE ID AMF SUPI used for UE identification
UE location(s) AMF UE position (TA/cell entered) with timestamp
Fine-granularity location LCS Coordinates (GAD shape), timestamp, motion events, QoS accuracy
Linear distance threshold NWDAF | Distance travelled before triggering new reports
Type Allocation Code (TAC) | AMF Vendor/model info; helps detect abnormal mobility
Frequent mobility updates AMF Detects abnormal “ping-pong” mobility from cell reselections
UE access behaviour AMF Metrics on UE state transitions (idle, connected, handover)
UE location trends AMF Long-term statistics of UE location changes

5GC network and the RAN, as shown in figure 1. The 5GC
architecture is well organized in TS 23.501 and the associated
procedures in TS 23.502 define the roles of the Access and
Mobility Management Function (AMF), Session Management
Function (SMF), User Plane Function (UPF), and the Data
Network (DN). AMF handles UE registration, connection,
and mobility anchoring. The SMF manages Packet Data Unit
(PDU) session establishment and policy-driven path control,
while the UPF ensures user plane forwarding toward the
Data Network (DN). United with these functions maintains
session continuity as the UE moves across RANs. In the
RAN, TS 38.300 describes the overall NR architecture and
TS 38.331 specifies Radio Resource Control (RRC) signaling
procedures. UEs perform measurements such as RSRP, RSRQ,
and SINR, which are reported to the gNB. Based on these
reports, the gNB initiates or coordinates handover execution
with the AMF. Enhancements introduced in Release 16 and
Release 17, including dual connectivity, conditional handover,
and mobility robustness optimization, are documented in TR
38.863. These procedures ensure mobility performance in
dense and high-mobility environments.

In addition to these SGC and RAN functions, the Location
Management Function (LMF) is employed to support 5G
Location Services (LCS) as specified in TS 23.273 and TS
38.305. The LMF collects measurement information from the
gNB (via NRPPa) and the UE (via LPP), and interacts with the
AMF to support positioning and mobility related procedures.
By bridging radio-level measurements and SGC level contexts,
the LMF enables location aware mobility management.

The integration of UE-related mobility data from both
domains, augmented with LMF outputs, naturally advances the
development of a unified framework. Such integration allows
cross-validation of location and mobility patterns, enhances
prediction accuracy, and establishes the foundation for the
subsequent discussion on integrated domains. In this context,
the inclusion of LCS-derived location data from 5GC, as spec-
ified in the 3GPP standards, becomes essential for enabling
standardized and reliable mobility prediction.

III. 5GC, RAN, AND INTEGRATED DOMAINS

As discussed in the preceding section, the 5GC and the RAN
are responsible for fundamentally different aspects of the 5G
system and therefore provide distinct types of information.
According to the relevant 3GPP specifications, it is possible

to identify the categories of data that must be extracted from
each domain in order to enable accurate mobility analysis and
prediction.

A. Mobility Management Information in the 5GC

In the 5GC domain, mobility-related information primarily
refers to the broad area of user activity and its corresponding
estimated location. This domain focuses on identifying the
UE, tracking its access and registration status, and collecting
location information at varying levels of granularity. The AMF
provides UE identity and coarse location updates, while the
LCS is responsible for fine-granularity positioning. In addition,
the Network Data Analytics Function (NWDAF), standardized
in 3GPP TS 23.288, enhances mobility management by deriv-
ing statistical and predictive insights such as abnormal mobil-
ity detection or distance-based reporting thresholds. Together,
these functional entities form the principal sources of 5SGC-
domain mobility information, as summarized in Table I.

B. Mobility-Related Information in RAN

In contrast to the 5GC, the RAN domain provides fine-
grained and almost real-time information derived from direct
radio measurements. This domain emphasizes short-term dy-
namics of UE behavior, such as mobility history, handover
performance, and radio link quality. According to 3GPP TS
38.300 and TS 38.331, the gNB and associated nodes are
responsible for delivering such detailed mobility information,
which can be leveraged for AI/ML-based prediction and
optimization, as summarized in Table II.

C. Unified Framework for 5GC and RAN Mobility Information

While the 5SGC and RAN individually provide valuable
but distinct types of mobility information, their integration
yields a more complete and actionable view of UE behavior.
The 5GC offers broad and often estimated mobility data,
such as location updates and access behavior, whereas the
RAN contributes instance measurements, including radio link
quality and handover events. When these two data sources
are combined, the resulting dataset enables cross-domain
correlation that can improve mobility prediction accuracy,
anomaly detection, and resource optimization. This integrated
perspective is particularly aligned with recent 3GPP directions,
where cross-domain data analytics is increasingly emphasized
to support AI/ML-driven mobility management.
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TABLE II: RAN-domain information relevant to mobility (3GPP TS 38.300/38.331; ref. TR 37.817 for AI/ML inputs)

Category | Information (examples aligned with TS 38.331 RRC measurements/events) Source

Input UE location context (serving cell ID, PCI/beam info), UE speed/velocity estimate UE / gNB

Input Radio measurements for serving/neighbor cells (RSRP, RSRQ, SINR), beam quality, CSI | UE (RRC MeasReport)
Input Measurement events (e.g., A1-A6, conditional HO triggers), time-to-trigger, offsets UE — gNB (RRC)
Input UE mobility history (recent serving cells / TA updates observed at RAN side) eNB

Input Neighbor-cell context and historical KPIs (HO success/failure, block error, delay) Neighbor gNBs
Input Position/QoS/performance of historically handovered UEs around the target area Neighbor gNBs
Input Current/predicted RAN load (PRB utilization, buffer, scheduling backlog) eNB / OAM

Input UE handover logs (success/rollback/failure causes, radio link failure counters) gNB

Input Trajectory estimates (short-term path, likely next cell/beam) Local analytics
Input Predicted resource status (RB availability per cell/beam, expected interference) Local analytics
Input Current/predicted UE traffic profile (flow count/bitrate/burstiness) Local analytics

IV. METHODOLOGY

The UE mobility traces and base station information
were obtained from Koln dataset [6], which provides times-
tamped UE trajectories in the form (time, ue_id, x,
vy, speed) and base station data in the form (bs_id,
x, vy). Each UE entry specifies the 2 dimensional position
and instantaneous speed of an UE at a given simulation
time, enabling accurate reconstruction of large scale mobility
patterns within the city of Koln. In the simulation, gNBs are
configured with unique identifiers bs_id and fixed deploy-
ment coordinates x, y, while UEs follow time varying tra-
jectories directly derived from the trace dataset. This ensures
that UE positions evolve realistically over time, rather than
relying on synthetic mobility models.we set up the simulation
environment according to the 5G standalone specifications.
Each UE is equipped with four antennas, two for transmission
and two for reception, with a transmission power of 23 dBm
and height of UE 1.5m. On the other hand gNB is configured
with height of 10m and a transmission power of 40 dBm. It
employs a total of 12 antennas, comprising eight transmit and
four receive antennas, and utilizes an omnidirectional antenna
configuration. The simulation is carried out in NetSim, which
supports SGC functions such as AMF, SMF, UPF. However,
NetSim does not support LCS and its related function LMF,
which led to build our own.

UE Mobility

Information
From .
Koln NetSim
Dataset

Base Station
Information

Integrated
data

Fig. 2: Schematic representation of the proposed workflow.

From this setup, logs are collected from three perspectives:
(1) RAN domain logs including RSRP, cell associations, and
handover triggers, (ii)) 5GC domain logs including registra-
tion, session management, and UE state transitions, and (iii)
an integrated dataset that contains RAN and core domains
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Fig. 3: (a) Voronoi tessellation of gNB sites, (b) UE trajectories
within the simulation area.

characteristics. Figure 2 represents the integrated process flow,
where BS and UE mobility traces from the Koln dataset are
applied to NetSim. The resulting simulation generates logs cor-
responding to the RAN, the 5GC, and the integrated domain.
The geometric distribution of the 246 gNB sites is represented
through a Voronoi tessellation, as shown in Figure 3a. In this
construction, each polygon corresponds to the coverage area
of a gNB, determined by the locus of points that are closer
to that gNB than to any other. This representation provides an
abstraction of cell boundaries under ideal isotropic propagation
conditions. Although it does not account for realistic channel
effects such as fading or shadowing, it serves as a useful
baseline for mobility and handover analysis, and can be cross-
validated against NetSim-derived coverage logs.

As illustrated in Fig. 3b, the trajectories of UE are dis-
tributed within a simulation area of 800 m x 500 m. Each UE
follows a file-based mobility setup from Koln dataset. Among
all simulated UEs, the top 50 devices with the longest travel
distances are highlighted, demonstrating their higher mobility
and frequent transitions across multiple cells. These highly
mobile UEs are particularly important since they generate
more frequent handovers and contribute significantly to net-
work signaling loads. Figure 4 illustrates the NetSim graphical
user interface (GUI) where the simulation scenario is executed.
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Fig. 4: NetSim GUI screen with 500 active nodes.

A large number of gNBs and UEs are deployed by import-
ing XML-based configuration files, enabling flexible control
over node placement and simulation parameters. The example
shown in the figure contains 500 active nodes including 246
base stations. Figure 5 illustrates a representative handover log
produced by NetSim. Each entry captures the UE identifier,
serving gNB, target gNB, and the event time at which the
handover is triggered. The log also incorporates the Time-to-
Trigger (TTT) parameter, defined in 3GPP TS 38.331, which
specifies the minimum duration that the handover condition
(e.g., RSRP difference exceeding the event A3 offset plus
hysteresis) must be satisfied before execution. This prevents
unnecessary “ping-pong” handovers caused by short-term fad-
ing. In addition, the log captures the Handover Interruption
Time (HIT), which represents the service disruption experi-
enced by the UE during the transition from the serving to
the target gNB. HIT is a critical performance indicator since
it directly affects latency-sensitive applications. By logging
both TTT and HIT, the dataset aligns with standard-compliant
handover definitions and provides quantitative insight into
mobility robustness. These logs form the foundation for later
integration with SGC and LCS data, enabling cross-domain
mobility prediction and analytics. Figure 6 example event
trace obtained from NetSim, showing system-level logging of
protocol activities across different network entities.

V. CONCLUSION

This work demonstrated that the extraction and analysis
of RAN, 5GC, and integrated domain data through NetSim
constitute a comprehensive framework for evaluating UE mo-
bility. Unlike domain-specific studies, the integrated-domain
perspective captures the interplay between radio conditions,
session management, and end-to-end QoS. Our results suggest
that this holistic approach not only aligns with the goals of
3GPP Releases 17 and 18, but also offers practical advantages
for designing more resilient mobility management strategies.
The significance of this study lies in demonstrating that multi-

Time(ms) - UE Id
171 UE_193366

~|Serving Cell
MACRO CELL GNB OMNI ANT_9

- | Target Cell[~| Serving SSB SNR(B) -| Target SSB SNR(dB) - | Remarks
MACRO CELL 4626742 24557729 Handover Initiated

171 UE_1242881 MACRO CELL GNB OMNI ANT9  MACRO CELL 17.250621 22.637664 Handover Initiated
171 UE_1559770 MACRO CELL GNB OMNIANT9  MACRO CELL 15.630406 24901041 Handover Initiated
171 UE_1583497 MACRO CELL GNB OMNI ANT.9  MACRO CELL 10117265 16.717494 Handover Initiated
171 UE_1308 MACRO CELL GNB OMNI ANT_28  MACRO CELL 19.400608 22.599605 Handover Initiated
171 UE_1016964 MACRO CELL GNB OMNI ANT_28  MACRO CELL 19.090596 28.974148 Handover Initiated
171 UE_1030954 MACRO CELL GNB OMNI ANT_33  MACRO CELL 3979584 8798052 Handover Initiated
171 UE_1494584 MACRO CELL GNB OMNI ANT_36  MACRO CELL 7.607872 14724864 Handover Initiated
171 UE_1508533 MACRO CELL GNB OMNI ANT_36 MACRO CELL 8.82388 26.55115 Handover Initiated
171 UE_1398234 MACRO CELL GNB OMNI ANT_56  MACRO CELL 10933702 18.870576 Handover Initiated
171 UE11959  MACRO CELL GNB OMNI ANT_59  MACRO CELL 4629557 13.098483 Handover Initiated
171 UE_203273  MACRO CELL GNB OMNI ANT_75  MACRO CELL 21587562 24746342 Handover Initiated
171 UE_1075695 MACRO CELL GNB OMNI ANT_75  MACRO CELL 15726121 25711707 Handover Initiated
171 UE_1167440 MACRO CELL GNB OMNI ANT_75  MACRO CELL 21912581 32217371 Handover Initiated
171 UE_1207508 MACRO CELL GNB OMNI ANT_75 MACRO CELL 17.094848 20.352804 Handover Initiated
171 UE_1376892 MACRO CELL GNB OMNI ANT_75  MACRO CELL 13.944662 22.362785 Handover Initiated
171 UE_1509319 MACRO CELL GNB OMNI ANT_75  MACRO CELL 20238579 24275922 Handover Initiated
206 UE_1509319 MACRO CELL GNB OMNI ANT_28  MACRO CELL 15.847923 20.238579 Handover Initiated
206 UE_1559770 MACRO CELL GNB OMNI ANT_28  MACRO CELL 861283 18292857 Handover Initiated
206 UE_1308 MACRO CELL GNB OMNI ANT_36  MACRO CELL 13.259751 18.08434 Handover Initiated
206 UE_203273  MACRO CELL GNB OMNI ANT_36 MACRO CELL -2.352197 19212029 Handover Initiated
206 UE_1376892 MACRO CELL GNB OMNI ANT_36 MACRO CELL 17.860178 26.662153 Handover Initiated
206 UE_1398234 MACRO CELL GNB OMNI ANT_76  MACRO CELL -6.291654 0.392691 Handover Initiated
206 UE_1030954 MACRO CELL GNB OMNI ANT_82 MACRO CELL -13.146829 255234 Handover Initiated
206 UE_11959  MACRO CELL GNB OMNI ANT_97 MACRO CELL 10621795 20.815473 Handover Initiated

Fig. 5: Mobility-predictive data: NetSim handover log.

face_1d - Application Id - Packet Id - Segment id - Protoc
0 ETHER

iame =] Subevent Type -  Packet Size(Bytes) =| Prev_Event 1d -
ETHIEUP

Event d | Event Type =] Event Time({d) = Device_Type =] Device 1d
T TIMER EVENT 0AMF
27

0 ETHERNET ETHFUP

2 0 0 0 0
3 2 0 0 o 0

EVENT oswircH 4 1 0 0 0 ETHERNET ETHIEUR 0 0

0 swicH 4 2 o 0 0 ETHERNET ETHIEUP o 0

T oswcH 4 3 o 0 O ETHERNET ETHIEUP 0 )

6 TIMER_EVENT 0 swiTcH 4 4 0 0 0 ETHERNET ETHIEUP 0 0
7 TIMERLEVENT. oswicH 4 5 0 0 O ETHERNET. ETHIEUP o 0
8 TIMER_EVENT 0 swiTcH 4 6 0 0 0 ETHERNET ETHIEUP 0 0
9 TIMER_EVENT oswcH 4 7 o o O ETHERNET ETHIEUP o )
10 TIMER_EVENT 0 swircH 4 s 0 0 0 ETHERNE ETHIEUP 0 0
oswcH 4 o o 0 O ETHERNET ETHIEUP o [

0 swicH 4 10 0 0 0 ETHERNET ETHLIFUP 0 0

oswicH ) n 0 0 0 ETHERNET ETHIEUR 0 0

0 swiTcH 4 2 0 0 0 ETHERNET ETHIEUP 0 0

oswcH 4 () o 0 O ETHERNET ETHIEUP 0 0

o swircH 4 14 0 0 0 ETHERNET ETHFUP 0 0

0swircH 4 15 0 0 0 ETHERNET ETHIEUR 0 0

0 swicH 4 3 o 0 0 ETHERNET ETHIEUP o 0

oswicH 4 7 o 0 O ETHERNET ETHIEUP o 0

0 swiTcH 4 1 0 0 0 ETHERNET ETHIEUP 0 0

oswicH 4 19 0 0 O ETHERNET ETHIEUP 0 0

0 swiTcH 4 2 0 0 0 ETHERNET ETHIEUP o 0

oswicH 4 2 0 0 0 ETHERNET ETHIEUP 0 0

24 TIVER EVENT 0 swircH 4 2 0 0 0 ETHERNE ETHEUP 0 0
25 TIMER _EVENT oswcH 4 2 o 0 O ETHERNET ETHIEUP o 0

Fig. 6: Mobility-predictive data: NetSim event trace log.

domain insights can transform the way mobility is managed
in future networks. By revealing dependencies between RAN
metrics and 5GC behavior, our methodology enables operators
and researchers to identify bottlenecks that would remain
hidden in isolated analyses. In the future, our focus will be on
building Al-driven mobility prediction models that leverage
the extracted datasets.
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