979-8-3315-5678-5/25/$31.00 ©2025 IEEE

CtrIBench: Towards Accurate API-Level
Benchmarking in 5G Core Control Plane

Chanuk Park
Department of Al-Based Convergence
Dankook University
cupark @dankook.ac.kr

Abstract—The service-based architecture (SBA) of the 5G
Core enables cloud-native deployment but makes performance
evaluation harder. Existing end-to-end (E2E) metrics, such as
Registration Time, compress entire procedures into a single
number. This hides which Network Function (NF) or API actually
causes delays, and prevents targeted optimization. General HTTP
benchmarking tools are also insufficient because they cannot
capture realistic 5G-specific workflows such as chained APIs
or cryptographic authentication steps. We present CtriBench,
a domain-specific microbenchmarking tool for the 5G Core
Control Plane. CtriBench parses 3GPP OpenAPI specifications,
discovers NF endpoints via the NRF, and automates 5G-AKA
authentication with the Milenage algorithm. It can generate
configurable load and chain-dependent APIs, giving granular,
fine-grained, and reproducible latency measurements. In exper-
iments with Free5GC, CtriBench revealed API-level bottlenecks
that conventional E2E metrics could not precisely show. Unlike
generic HTTP load generators, it executes the full standardized
procedure, ensuring measurements that reflect realistic Control
Plane execution rather than synthetic traffic.

Index Terms—S5G, Control Plane, API, Microbenchmark

I. INTRODUCTION

Starting from 3GPP Release 15, the 5G Core was standard-
ized with the Service-Based Architecture (SBA). In this model,
each Network Function (NF) interacts via HTTP/2-based APIs,
primarily following a RESTful style, while also supporting
subscribe/notify patterns for state-change notifications [1],
[2]. This cloud-native, microservices-based design replaces
the traditional hardware-centric architecture, enabling rapid
service deployment, horizontal scalability, and independent NF
evolution. Such flexibility underpins the three key 5G ser-
vice scenarios: enhanced Mobile Broadband (eMBB), Ultra-
Reliable Low-Latency Communications (URLLC), and mas-
sive Machine-Type Communications (mMTC) [3]. However,
the shift to API-centric operation introduces complexity for
performance evaluation, particularly in the Control Plane.

The Control Plane coordinates functions such as authenti-
cation, session management, and policy enforcement through
multi-step API interactions among NFs including AMF, SMF,
AUSEF, UDM, and NRF [4]. Even a few milliseconds of delay
at each NF accumulate across multiple APIs, degrading end-
to-end (E2E) service quality. Existing evaluations, as defined
in 3GPP TS 28.552 [5], rely on procedure-level E2E KPIs such

* Jaechyun Nam (namjh@dankook.ac.kr) is the corresponding author.

1830

Jaehyun Nam*
Department of Computer Engineering
Dankook University
namjh@dankook.ac.kr

as Registration Time and PDU Session Establishment Time.
While these metrics indicate overall service quality, they fail
to reveal the origin of latency.

A closer look at current evaluation approaches reveals
several challenges. First, the granularity of E2E KPIs is too
coarse to isolate latency variations at the NF or API level,
making it difficult to pinpoint the true source of bottlenecks.
Second, the localized effects of NF-level optimizations often
remain hidden, since improvements applied to one NF may
not be reflected in the overall procedure time. Third, E2E
testing environments are heavyweight and entangled, requiring
full UE/RAN simulators and complete Core deployments;
this coupling of RAN and Core processing complicates re-
producibility and prevents consistent measurement of Con-
trol Plane performance in isolation. Finally, generic HTTP
benchmarking tools cannot faithfully reproduce SBA-specific
workflows, since they lack support for dynamic NF discovery,
sequential API chaining, and cryptographic operations such as
5G-AKA authentication. Together, these limitations highlight
the absence of a domain-specific method for fine-grained,
reproducible evaluation of the 5G Core Control Plane.

To address these challenges, we present CtrlBench, an API-
level microbenchmark tool explicitly designed for the 5G Core
Control Plane. Unlike conventional E2E KPIs that collapse
complex procedures into a single value, CtrlBench enables
fine-grained and granular attribution of latency to specific
APIs and NFs, providing actionable insights for both system
operators and researchers. It automatically parses 3GPP Ope-
nAPI specifications to extract NF-specific APIs and schemas,
dynamically discovers endpoints via the NRF, and integrates
the Milenage algorithm to reproduce 5G-AKA authentication
in a fully automated manner. Beyond static benchmarking,
it supports configurable load generation and declarative API
chaining, allowing realistic and scalable emulation of SBA
workflows under diverse conditions. These capabilities not
only expose bottlenecks that remain invisible to aggregated
metrics but also deliver reproducible and comprehensive per-
formance baselines that facilitate NF-level optimization, re-
gression testing, and fair comparison across different 5G Core
implementations. By bridging the gap between coarse-grained
EZ2E evaluation and domain-specific microbenchmarking, Ctrl-
Bench establishes a new methodology for systematic and
precise analysis of 5G Core Control Plane performance.

ICTC 2025

Contributions. This paper makes the following contributions:
o API-level benchmarking framework: Provides fine-
grained measurement and control of prerequisite API exe-
cution, enabling quantitative comparison between session
reuse and new session creation.

o 5G-specific workflow automation: Integrates the Milenage
algorithm to compute RES* values in real time and prop-
agate them across chained APIs, faithfully reproducing
5G-AKA authentication.

o OpenAPl-driven testbed simplification: Combines
schema extraction from 3GPP OpenAPI, NRF-based
dynamic discovery, and HTTP/2 support to reduce the
complexity of Control Plane benchmarking.

Paper Organization. The remainder of this paper is structured
as follows. Section II provides background and motivation.
Section III presents the design of CtrlBench, and Section IV
details its implementation. Section V evaluates its perfor-
mance, and Section VI concludes.

II. BACKGROUND AND MOTIVATION

A. Service-Based Architecture and Control Plane Performance

The 5G Core, standardized in 3GPP Release 15, adopts
a SBA where each NF is implemented as a microservice
and communicates via HTTP/2-based Service-Based Inter-
faces (SBIs). Unlike traditional monolithic cores, SBA enables
containerized deployment, elastic scaling, and rapid evolution
of individual NFs. These features make SBA well-suited for
eMBB, URLLC, and mMTC use cases, but they also shift per-
formance evaluation toward distributed API-level interactions.
In the Control Plane, procedures such as registration or PDU
session establishment are no longer single-step operations,
but multi-hop API chains discovered dynamically through
the NRF. As a result, latency accumulates across APIs, and
subtle NF-level delays can propagate into noticeable E2E
performance degradation.

B. Performance Metrics in Previous Studies

3GPP TS 28.552 defines standardized E2E Key Perfor-
mance Indicators (KPIs), including Registration Time, PDU
Session Establishment Time, Throughput, and Success Rate.
These KPIs have been the dominant methodology in both
standardization and research [6]. They are effective for cap-
turing overall service quality but insufficient for diagnosing
the internal sources of latency. Figure 1 illustrates how these
KPIs cover only the start and end of procedures, leaving
intermediate API-level delays hidden in a scalar measurement.

Beyond KPIs, prior studies have investigated low-level be-
haviors such as CPU and memory utilization, system calls, and
NF-level queuing latencies [7]-[9]. While these efforts provide
useful insight into the runtime characteristics of individual
NFs, they do not capture how latency propagates across APIs
in SBA workflows. As a result, existing approaches fall into
two extremes: E2E KPIs aggregate too broadly and conceal
where delays arise, whereas NF-level profiling focuses too
narrowly and cannot explain inter-service interactions. What
is missing is a methodology that exposes latency at the API

5G Core

UE
Other NFs
v ¥
gNB(RAN) [AmF]| AusF }«—] ubm }+—] UDR

Measurement Window

Registration Time = T(Registration Request - Registration Complete)

(AMF) (AMF)
(a) Registration Procedure
UE 5G Core
Other NFs
L2 v
gNB(RAN) AMF [smF Je—{ upF |
Measurement Window

PDU Session Setup Time = T(Update SM Context - Create/Update SM Context)
(SMF) (AMF)

(b) PDU Session Setup Procedure

Fig. 1: Mapping E2E KPIs to 5G Core procedures. (a) Regis-
tration Time to Registration procedure. (b) PDU Session Setup
Time to Session Setup procedure.

level, where both the origins of performance bottlenecks and
their impact on E2E service quality become visible.

C. Challenges in Benchmarking the 5G Core Control Plane

Despite recent progress, benchmarking the 5G Core Control
Plane still faces three critical and persistent challenges.

First, there is a lack of granularity in existing latency met-
rics. E2E KPIs collapse multi-step Control Plane procedures
into aggregated single values. As a result, even if latency
increases significantly and unpredictably, it is impossible to
determine which NF or which API is truly responsible. This
lack of fine-grained resolution ultimately prevents accurate
identification of meaningful optimization targets.

Second, the experimental setup is too heavyweight, com-
plex, and resource-intensive. Conventional evaluations require
UE/RAN simulators and full Core deployments. Such setups
tightly couple RAN and Core processing, making it extremely
difficult to reproduce results, isolate subtle performance issues,
or conduct rapid experimental iterations. They also consume
excessive hardware and software resources, creating unneces-
sary operational overhead for Control Plane—only studies.

Third, existing benchmarking tools are functionally inade-
quate for realistic SBA. Generic HTTP load generators cannot
accurately model 5G-specific workflows, since they lack sup-
port for dynamic NF discovery, multi-step API dependencies,
and cryptographic operations such as 5G-AKA authentication.
As a result, they only enable simplified mock tests that fail to
faithfully reflect real Control Plane behavior.

In sum, current approaches either aggregate too much
information, require excessive infrastructure components, or
ignore 5G-specific API semantics. A lightweight, domain-
specific methodology for precise API-level benchmarking is
therefore essential for accurate, reproducible, and practically
useful evaluation of 5G Core Control Plane performance.

1831

Input 5G Core
OpenAPIH Config
T | NRF | | OtherNFs | | TargetNF |
CLl === -
+ 1
Flag Parser
CtrlBench

——

| NF Discovery
Client

- Chain - Benchmark
Spec Parser - .
. Executor H Engllne
1

i H
AKA i Result
Calculator Analyzer

Fig. 2: Architecture of CtriBench. Inputs are parsed into
requests, NF endpoints discovered via NRF, APIs executed
with AKA support, and results analyzed for latency attribution.

Request

Builder

III. CtrlBench DESIGN

This section presents the architecture and operational work-
flow of CtrlBench, which addresses key limitations in the
performance evaluation of the 5SG Core Control Plane.

A. System Overview

Overall Architecture. CtrlBench is implemented as a
lightweight, standalone, and domain-specific benchmarking
tool that interacts with the 5G Core exclusively through stan-
dardized APIs. As illustrated in Fig. 2, the system consists of
three logical layers: the input layer, the CtrlBench core, and the
target layer. The input layer specifies detailed benchmarking
configurations through CLI flags, OpenAPI specifications, and
YAML templates that capture user-specified parameters. The
core layer orchestrates benchmarking by managing request
construction, NF discovery, prerequisite chaining, authentica-
tion, and result aggregation. The target layer represents the
actual 5G Core NFs under test. This separation of concerns
ensures that benchmarking remains portable, reproducible, and
independent of particular NF implementations.

Overall Workflow. The workflow is divided into two
phases: configuration generation and benchmark execution.
In the configuration phase, CtrliBench parses OpenAPI spec-
ifications to extract detailed API metadata and generates
YAML templates with placeholders for parameters, headers,
and request bodies. For AUSF benchmarking, the templates in-
corporate mandatory fields for 5G-AKA credentials, enabling
fully reproducible authentication tests. During execution, the
tool loads the configuration, validates inputs, resolves NF
endpoints via the NRF, and constructs API requests with
correctly substituted parameters. When chain execution is
required, prerequisite APIs are automatically invoked and their
outputs injected into subsequent requests. The benchmark
engine generates controlled load according to user-specified
concurrency and rate limits, while the result analyzer ag-
gregates response times, percentiles, and success rates. For
APIs requiring authentication, the embedded 5G-AKA module
computes RES* values and supplies them automatically to
complete the authentication workflow.

API List YAML CtrlBench \| 56 Core
. \
* Request Builder Benchmark Target NF
/NAUSE B Engine

URL:
http://target-nf~
Iyl Method: POST

Post-Ue-Authentication

(+ Headers, Parameters, Iteration: 1000

CtrlBench

Request bodies) e ™| buration: 105
Application/Json | | \worker: 10
Request Bodies: o Results
Configuration YAML Suplorsuct: ~ | | Rate i 109 Vel Regesis
Application/ison ,—'Calculate Success Request:

Success Rate:

Result Analyzer
Y Response Time:

Authentication Info: -

____-Jtt------___

SupiorSuci: imsi— 20... Average Trimmed Average H Average:
API Chain: Percentiles Success Rate Trimmed:
value: False :

Fig. 3: API-level microbenchmarking in CtriBench, from
YAML input through request execution to result analysis.

B. API-Level Performance Isolation and Reproducibility

As shown in Fig. 3, CtriBench isolates and precisely mea-
sures individual API calls, thereby overcoming the well-known
limitations of conventional E2E metrics that collapse multi-
step latencies into a single aggregate value and obscure the
actual source of performance variation. Rather than simulating
complete UE registration procedures, the tool directly invokes
target APIs with predefined parameters, which effectively
eliminates confounding factors such as RAN simulation over-
head, unrelated inter-NF delays, or fluctuations introduced
by complex signaling sequences. This strict isolation enables
precise attribution of latency to specific NFs and, more gran-
ularly, to individual API calls. Response times are measured
by capturing high-resolution timestamps immediately before
request transmission and immediately after response reception.

Response-time variability is addressed through systematic
statistical characterization instead of relying on single-point
summary metrics. CtrlBench reports multiple percentiles (P50,
P75, P90, P95, P99) and trimmed means (10%, 5%, 1%) to
mitigate the disproportionate influence of outliers. In con-
current execution scenarios, results from all benchmarking
workers are aggregated into unified latency distributions with
corresponding statistical summaries. Successful and failed
requests are recorded separately to prevent error responses
from artificially distorting latency measurements.

Reproducibility is guaranteed by declaratively recording
all parameters in version-controllable YAML files, including
request bodies, headers, and chain relationships that capture
the experimental state. The tool is distributed as a single
compact binary with no runtime dependencies on databases,
queues, or orchestration frameworks, ensuring reproduction of
load patterns under the same configuration and CLI flags. Run-
time parameters such as concurrency, duration, and throughput
can be injected through CLI flags, enabling straightforward
scripting of diverse scenarios. Results are exported in plain text
for easy parsing and seamless integration into external analysis
pipelines. Through API-level isolation and explicit configura-
tion recording, CtrlBench transforms performance evaluation
from a coarse-grained, environment-dependent process into
a fine-grained, repeatable experiment, thereby addressing a
fundamental gap left by conventional E2E simulators.

1832

5G Core

CtrlBench

NF Discovery Client

NRF
NF Discovery Request

CtriBench CLI
ctribench -t AUSF - a API

nrf-url: http://nrf-nnrf~ AUSF-url: API List YAML

requester-nf-type: AF http://ausf:80 | | NF: AUSF

target-nf-type: AUSF | Discovery Service: nausf-auth/v1
API: api_path

Request Builder

-t AUSF Final URL
nrf-url: http://nrf-nnrf~ http://ausf:80/nausf- W |‘

Configuration YAML
NF Discovery parameter:

nrf-url: http://nrf-nnrf~
requester-nf-type: AF

requester-nf-type: AF auth/vi/{api path}

(a) NRF-based NF discovery automatically resolves NF endpoints for requests.

5G Core
Prerequisites API Call

CtrlBench [| Target NF

Benchmark API Call

CLI CtriBench
ctribench -t AUSF —a API Benchmark Engine
Configuration YAML C’;”"?/ LT/RL f > Cc’ing/ ;/RL
Chain config: ain lype M Qejore_eac ain ype
API name: 5g-aka Request Data N_r*__Request Data
prerequisite API: execute benchmark
APl name: ue_auth Request Builder
NF: Target NF response
Chain Type: before_each, Build N Build
(PRI (TR F| Prerequistes API Benchmark API
authCtxld: S.authCtxld 1 Y
resStar: S.resStar compute resStar

(b) API chaining executes prerequisite calls and computes authentication
values, ensuring execution and realistic benchmarking of 5G Core procedures.

Fig. 4: 5G domain-specific features in CtriBench.

C. 5G Domain-Specific Feature Integration

Unlike general-purpose HTTP benchmarking tools that rely
exclusively on static endpoints, CtrlBench incorporates 5G-
specific features defined by 3GPP in order to capture the
inherently dynamic characteristics of SBA deployments. As
illustrated in Fig. 4(a), it implements NRF-based service
discovery (TS 29.510), thereby allowing benchmark requests
to adapt to runtime NF registration and evolving topology
changes. The NF Discovery Client constructs queries with
target-nf-type and requester-nf-type, parses SearchResult re-
sponses to extract NF profiles, and derives endpoints from
the ipEndPoints array. Results are cached within a single
benchmark execution to reduce unnecessary overhead and are
invalidated upon completion to maintain fidelity and accuracy
across independent runs. This design ensures that performance
evaluation faithfully reflects operational 5G dynamics rather
than relying on static or unrealistic assumptions.

Service workflows in 5G frequently involve sequential de-
pendencies, where the outputs of one API invocation become
inputs to another [10]. As depicted in Fig. 4(b), CtriBench
addresses this requirement through a chain execution mech-
anism declaratively defined in YAML. Each chain specifies
a prerequisite API together with mapping rules, which em-
ploy JSONPath to extract response fields and substitute them
into parameters, headers, or request bodies of subsequent
invocations. Two execution modes provide methodological
flexibility: once_before_benchmark, which executes the

prerequisite once and reuses results throughout all iterations,
and before_each_call, which ensures fresh values for
every invocation to emulate independent transactions. Beyond
simple extraction, computed values such as RES* can be
stored in the ExtractedData map, thereby enabling cryp-
tographic or stateful outputs to be seamlessly integrated into
subsequent requests. This mechanism captures realistic service
workflows while simultaneously preserving experimental rigor
and reproducibility guarantees.

Furthermore, CtriBench integrates domain-specific authen-
tication logic that cannot be accommodated by generic bench-
marking tools. The AUSF procedure necessitates crypto-
graphic operations specified in TS 33.501, including Milenage-
based verification and key derivation. Upon receiving RAND
and AUTN from the Post-Ue—-Authentications APIL,
the tool derives SQN using AK, verifies AUTN through MAC
checking, computes RES via function f2, and subsequently
derives RES* for confirmation. This sequence is transparently
executed during chain execution, with the resulting RES* auto-
matically supplied to the 5G-Aka—-Confirmation APIL By
embedding authentication primitives within the benchmarking
process, CtrlBench eliminates reliance on external scripts and
ensures both automation and fidelity in evaluating security-
critical procedures. This domain-specific integration, rooted
in deliberate design choices, bridges the gap between generic
benchmarking utilities and operational 5G Core workflows, es-
tablishing CtrlBench not merely as a synthetic traffic generator
but as a domain-aware tool aligned with 3GPP specifications.
By combining dynamic discovery, API chaining, and embed-
ded authentication, it faithfully reproduces operational SBA
workflows while ensuring academically reproducible results.

IV. IMPLEMENTATION

CtrlBench is implemented in Go with custom support for
5G Control Plane benchmarking. Since many testbeds use
HTTP/2 without TLS (h2c¢) [2], [11], we modified Go’s
http2.Transport to allow h2c by enabling A11owHTTP
and replacing DialTLS with a TCP dialer. This enables
practical interoperability while preserving optional TLS.

To emulate SBA workflows, CtriBench supports declarative
API chaining. Users specify prerequisite APIs and JSONPath
extraction rules in YAML, and extracted values are automat-
ically injected into target requests. Two execution modes are
provided: cached once before benchmarking or re-execution
before each call. For authentication, CtrlBench embeds 5G-
AKA computations using the Free5SGC Milenage library [12],
performing SQN recovery, AUTN verification, and RES*
derivation as defined in 3GPP TS 33.501 [13].

The load generator employs a worker pool with independent
clients to avoid contention and track latency per worker.
A token bucket algorithm enforces throughput limits, and
results are aggregated into percentiles, trimmed averages, and
success/failure counts. This ensures reproducible and fine-
grained performance measurements at the API level.

1833

V. EVALUATION

This section evaluates the effectiveness of CtriBench in
identifying performance variation points at the NF and API
levels that remain concealed when using conventional E2E
metrics. The objective is to determine whether CtrlBench can
more clearly reveal the specific locations of latency introduced
by deployment changes or performance anomalies.

A. Evaluation Setup

To evaluate its effectiveness, three scenarios were con-
structed. The baseline scenario (S1) deployed Control Plane
NFs across two worker nodes on a single physical host, with
AMF and SMF co-located on one node and AUSF, PCF, NSSF,
NRF, UDM, and UDR on the other. The split-NF scenario
(S2) migrated the latter group to a worker node on a separate
host, introducing additional network latency to their APIs. The
injected-delay scenario (S3) extended S1 by adding artificial
delay to the AUSF Ue-Authentications API, emulating
anomalies observed in practice.

Experiments were conducted on a Kubernetes cluster com-
prising five virtual machines across two physical hosts inter-
connected with 10 Gbps links. Nodes ran Ubuntu 22.04 with
Cilium as the default CNI. Free5GC was used as the 5G Core
and UERANSIM as the UE/RAN simulator [12], [14].

Two load conditions were considered: single UE registration
and multiple UE registrations. In the latter, ten registration
requests per second were issued until 1,000 UEs were reg-
istered. Measurements focused on three representative APIs:
UE-Authentications and 5G-AKA-Confirmation
from the AUSF, and Generate-Auth-Data from the
UDM. To approximate realistic deployment, CtrlBench was
co-located with the AMF for AUSF APIs and with the AUSF
for the UDM API. API-level latency measurements were
compared against the E2E Registration Time.

B. Execution Workflow of Benchmarking

Fig. 5 illustrates the detailed execution workflow of bench-
marking the AUSF’s 5G-AKA-Confirmation API using Ctrl-
Bench. The process begins by parsing the OpenAPI specifi-
cation to generate benchmarking templates, after which the
benchmark is initiated through the CLI. Based on NRF-
discovered information, the tool automatically derives the API
endpoint and request parameters, ensuring that the constructed
HTTP request reflects the actual service topology. A complete
request is then generated, including body fields and protocol
headers. Prior to invocation, the RES* value mandated by the
5G-AKA procedure is computed through embedded crypto-
graphic functions, thereby enabling authentication-compliant
execution without external dependencies. Finally, the API call
is issued and both the response semantics and latency are
reported as benchmarking results.

This workflow highlights that CtriBench goes beyond con-
ventional load generators by embedding 3GPP-standardized
procedures directly into the benchmarking process. By inte-
grating service discovery, parameter substitution, and authenti-
cation primitives, the tool provides operationally faithful mea-

> ctrlbench -b ausf

Building configuration file...

Building configuration for specified NFs: [AUSF]
Valid NFs found: [AUSF]

Configuration file created: configuration.yaml
API list file created: openapi/api_list.yaml

(a) Parsing the OpenAPI specification and generating templates

> ctrlbench -t ausf -a PutUeAuthentications5gAkaConfirmation -d 10 -r 3
Starting PrepareAPIExecution for NF=AUSF, API=PutUeAuthentications5gAka
Confirmation, skipChain=true

Skipping chain check for prerequisite API: PutUeAuthentications5gAkaCon
firmation

Using placeholder for field 'resStar' that will be filled by before_eac
h_call chain

Configuration validation passed - ready for execution

(b) Executing a sequential benchmark through the CLI

Discovered AUSF URL: http://controlplane-free5gc-ausf-service:80
Replaced path parameter: {authCtxId} —> imsi-208930000000003
Starting sequential benchmark:
Duration: 10s
Rate Limit: 3 req/s
Header[Content-Type] = application/json
Header[Accept] = application/json
Replaced path parameter: {authCtxId} —> imsi-208930000000003
Final URL: http://controlplane-free5gc-ausf-service:80/nausf-auth/v1l/ue
—authentications/imsi-208930000000003/5g-aka-confirmation
Execution Details:
NF: AUSF
API: PutUeAuthentications5gAkaConfirmation
Method: PUT
Path: /nausf-auth/v1/ue-authentications/{authCtxId}/5g-aka-confirmat
ion
Discovered URL: http://controlplane-free5gc-ausf-service:80
Parameters: map[authCtxId:imsi-208930000000003]
Request Body: {"resStar":"PLACEHOLDER_FOR_CHAIN_EXECUTION"}

(c) Building the complete HTTP request

FREE5GC RESSTAR CALCULATION
== CALCULATION COMPLETE
Computed XRES* (resStar): 8f280228UUbd665b8006ff306acefbee

Computed resStar: 8f280228U44bd665b8006ff306acefbee

Prerequisite API completed for before_each_call

ExtractedData available, contents:

resStar: 8f280228uUUbd665b8006ff306acefbee

Found value using key 'resStar': 8f280228uUubd665b8006ff306aeefbee
Applied request body mapping: resStar = 8f2802284U4bd665b8006ff306acefbe
e (from $.resStar)

Configuration validation passed - ready for execution

Replaced path parameter: {authCtxId} —> imsi-208930000000003

Response Body: {"authResult":"AUTHENTICATION_SUCCESS", "supi":"imsi-2089
30000000003", "kseaf" : "8f7bdU7fcce6ad3f985292U7051b966332b6fe509bbbU3d1
ldedeudu2afuudfe"}

(d) Computing RES* for 5G-AKA confirmation

SEQUENTIAL BENCHMARK RESULTS

Total Requests: 29
Successful: 29

Failed: ©

Success Rate: 100.00%

Total Duration: 10.001000728s

Response Times:

Average: 5.651477ms
Minimum: 5.013926ms
Maximum: 6.749976ms
90% Trimmed Average:
95% Trimmed Average: 5.634405ms
99% Trimmed Average: 5.651477ms

(e) Reporting the benchmark result of the API call

5.634405ms

Fig. 5: Execution workflow of CtrlBench benchmarking the
AUSF’s 5G-AKA Confirmation API.

surements that align with real 5G Core behavior, rather than
relying on static or artificially simplified request templates.

C. Analysis of E2E and API-Level Metrics

In the single-UE registration experiment (Fig.6(a, c)), the
average Registration Time was measured as 52.95 ms, 80.29
ms, and 64.37 ms for scenarios S1, S2, and S3, respec-
tively. During the same runs, the UE-Authentication, 5G-
AKA-Confirmation, and Generate-Auth-Data APIs exhibited
latencies in the narrow range of 3.94—19.57 ms, remaining sta-
ble across scenarios. When the load was scaled to 1,000 UEs

1834

st N2 w3
90 e 450 20 857 20 1896
80 < 200 38157 oo 18 18
g 70 \\ caa7 g 350 e § % g 1‘61 g ii
E ig > 7 E 300 E 12 s E 1 o
cLINZ .7 INNMIY \

(a) Single-UE Registration Time (b) Registration Time under 1000 UEs

UeAuth 5gAka GenAuthData UeAuth SgAka GenAuthData

(c) Single-call API latency (d) API latency under 1000 calls

Fig. 6: Evaluation Results of E2E Registration Time and API Response Time in Three Scenarios

(Fig.6(b, d)), the Registration Time rose sharply to 324.82 ms,
381.57 ms, and 358.02 ms, representing more than a fivefold
increase. In contrast, the latencies of the three representative
APIs stayed within 3.59-18.96 ms, without reflecting the same
level of growth observed at the E2E level.

These results indicate that E2E metrics capture a substantial
degradation of the overall registration procedure under heavy
load, whereas API-level measurements demonstrate that the
latency of individual service interfaces remains comparatively
stable. The discrepancy shows that the increase in Registration
Time is not explained by the simple accumulation of API pro-
cessing delays, but instead arises from procedural complexity
and systemic bottlenecks across the workflow.

Moreover, scenario-specific differences further illustrate the
analytical capability of CtrlBench. In S2, where NFs were
distributed across physical hosts, the UE-Authentication and
5G-AKA-Confirmation APIs experienced moderate latency
increases relative to S1, reflecting the cost of cross-host
communication. In S3, the artificial delay injected into the
AUSF is directly captured as elevated latency for the UE-
Authentication API, while the unrelated APIs remain unaf-
fected. This selective sensitivity highlights that CtrlBench not
only identifies performance degradation at the level of the
complete procedure but also attributes delays to specific NF
placements and API paths.

VI. CONCLUSION

This paper introduced CtrlBench, an OpenAPI-driven mi-
crobenchmarking framework for the 5G Core Control Plane
that addresses the limitations of E2E metrics by exposing la-
tency at individual service interfaces and isolating API-specific
bottlenecks. Evaluations across single-UE, large-scale regis-
tration, and NF deployment scenarios showed that CtriBench
uncovers performance variations invisible to aggregated met-
rics, demonstrating both accuracy and scalability for practical
5G Core analysis. By enabling lightweight, reproducible, and
domain-specific benchmarking without requiring full UE/RAN
simulation, it establishes a foundation for systematic diag-
nosis and optimization of service-based architectures. Future
work will extend CtriBench to capture richer workflows with
conditional dependencies, parallel invocations, and complex

service compositions, thereby providing deeper insights for
both current 5G deployments and emerging 6G networks. Fur-
thermore beyond benchmarking, CtriBench can also support
regression testing and anomaly localization pipelines, enabling
API-aware performance engineering and fair cross-deployment
comparisons.

ACKNOWLEDGMENT

This work was supported by Institute of Information &
Communications Technology Planning & Evaluation (IITP)
grant funded by the Korea government (MSIT). (No.RS-
2024-00398379, Development of High Available and High
Performance 6G Cross Cloud Infrastructure Technology)

REFERENCES
[1]
[2]

“TS 23.501,” https://www.etsi.org/deliver/etsi_ts/123500_123599/1235
01/16.06.00_60/ts_123501v160600p.pdf.

“TS 29.500,” https://www.etsi.org/deliver/etsi_ts/129500_129599/1295
00/16.04.00_60/ts_129500v160400p.pdf.

ITU-R, “Recommendation ITU-R M.2083-0: IMT Vision — Framework
and overall objectives of the future development of IMT for 2020 and
beyond,” https://www.itu.int/rec/R-REC-M.2083, September 2015.

“TS 29.510,” https://www.etsi.org/deliver/etsi_ts/129500_129599/1295
10/17.06.00_60/ts_129510v170600p.pdf.

“TS 28.552,” https://www.etsi.org/deliver/etsi_ts/128500_128599/1285
52/16.06.00_60/ts_128552v160600p.pdf.

Y.-S. Liu, S. Qi, P.-Y. Lin, H.-S. Tsai, K. K. Ramakrishnan, and J.-C.
Chen, “L25gc+: An improved, 3gpp-compliant 5g core for low-latency
control plane operations,” in 2023 IEEE 12th International Conference
on Cloud Networking, 2023, pp. 203-211.

M. Barbosa, M. Silva, E. Cavalcanti, and K. Dias, “Open-source 5g
core platforms: A low-cost solution and performance evaluation,” in
2025 International Conference on Information Networking, 2025, pp.
99-104.

T. Mukute, L. Mamushiane, A. A. Lysko, E.-R. Modroiu, T. Magedanz,
and J. Mwangama, “Control plane performance benchmarking and fea-
ture analysis of popular open-source 5g core networks: Openairinterface,
openSgs, and freeSge,” IEEE Access, vol. 12, pp. 113 336-113 360, 2024.
S. Subramanian, M. R. Kanagarathinam, and K. M. Sivalingam, “Perfor-
mance evaluation of 5g core network control-plane using openS5gs and
kubernetes,” in 2025 17th International Conference on COMmunication
Systems and NETworks, 2025, pp. 584-592.

“TS 23.502,” https://www.etsi.org/deliver/etsi_ts/123500_123599/1235
02/16.07.00_60/ts_123502v160700p.pdf.

“RFC7540,” https://datatracker.ietf.org/doc/html/rfc7540.

“freeSGC,” https://freeSgc.org/.

“TS 33.501,” https://www.etsi.org/deliver/etsi_ts/133500_133599/1335
01/16.03.00_60/ts_133501v160300p.pdf.

“UERANSIM,” https://github.com/aligungr/UERANSIM.

[3]

[4]
[5]

[7]

[8]

[9]

[10]
(11]
[12]
[13]

[14]

1835

