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Abstract—Channel state information (CSI) feedback is critical
for frequency division duplexing (FDD) massive multiple-input
multiple-output (MIMO) systems, yet the dimensionality of mod-
ern antenna–subcarrier configurations makes low-latency uplink
reporting challenging. Deep learning (DL) based autoencoder
schemes have proven effective for compressing and reconstructing
CSI, and attention-based variants such as TransNet report
notable reconstruction quality across a range of compression
ratios. However, these gains come at the expense of substantial
computational and memory footprints, which limit real-time
deployment at user equipment (UE). We address this gap with
T-TransNet, a ternary attention network that applies trainable
ternary quantization to the fully connected (FC) projections
inside multihead attention blocks, thereby reducing UE-side
arithmetic. Building on insights from binary designs for CSI
feedback and from trained ternary quantization methods in
computer vision, we introduce two complementary techniques
that preserve accuracy under aggressive quantization: (i) a
Learnable GLAQ activation that nonlinearly compresses outlier
magnitudes with a learnable scale; and (ii) column-wise ternary
quantization that allocates independent scaling to each output
channel of FC weights.

Index Terms—CSI feedback, massive MIMO, FDD, attention
network, ternary quantization, lightweight encoder.

I. INTRODUCTION

Massive MIMO is a cornerstone physical-layer technology
for 5G and beyond because large antenna arrays enable pro-
nounced spectral and energy-efficiency gains when accurate
downlink CSI is available at the base station (BS) for precod-
ing and scheduling. In FDD operation, however, the downlink
channel must be estimated at the user equipment (UE) and
fed back to the BS, and the resulting overhead scales with the
product of antenna count and subcarriers, quickly becoming
prohibitive in large-array regimes. Early work demonstrated
that learned autoencoder architectures (CsiNet) can exploit
channel structure more effectively than compressed-sensing
approaches at practical compression ratios, enabling high-
quality CSI reconstruction even when classical sparsity as-
sumptions are imperfect [1].

More recently, attention-based architectures have been ex-
plored for CSI feedback. Drawing inspiration from the Trans-
former, TransNet applies full self-attention within an encoder–
decoder pipeline and reports consistent reconstruction gains
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over convolutional baselines across several compression scales
[2]. Attention excels at capturing long-range dependencies
across the angular–delay structured CSI matrix, but introduces
sizable FC projections per attention head, increasing UE-side
memory and computation.

In practice, UE hardware and uplink latency constraints
motivate lightweight encoders whose inference pathways ex-
hibit low arithmetic intensity, modest parameter storage, and
reduced memory bandwidth. In [3], [4], binary quantized
CSI encoders show that aggressive quantization, particularly
within large FC bottlenecks, can reduce UE complexity while
preserving competitive reconstruction.

Moving beyond 1-bit representations, ternary weight net-
works (TWN) and trained ternary quantization (TTQ) methods
in the broader DL literature strike a more favorable accuracy,
efficiency balance by introducing a zero state and learnable
asymmetric scaling for positive and negative weights [5],
[6]. These insights suggest that applying structured ternary
quantization to the heavy FC components of attention blocks
could yield a practical attention-based CSI encoder.

Our Contributions: Motivated by the above, we propose
T-TransNet, a ternary-quantized attention architecture for CSI
feedback in FDD massive MIMO systems. Our main contri-
butions are as follows.

• We introduce a variant oriented to UE of TransNet
in which the dense projections of multi-head atten-
tion (MHA) and output mixing layers are ternarized to
{−α, 0, α} with a learnable scaling.

• We develop a Learnable Generalized Logarithmic Ac-
tivation Quantizer (GLAQ) that adaptively compresses
activation dynamic range prior to quantization, mitigating
information loss from low-bit weights.

• We propose column-wise ternary quantization that as-
signs independent scaling factors to each output column
of an FC weight matrix, improving the representational
capacity under 2-bit storage.

The remainder of this paper is organized as follows. Sec-
tion II reviews the FDD CSI feedback model and formalizes
the learning objective. Section III describes the T-TransNet
architecture, the ternary quantization procedure, the activation
of Learnable GLAQ and the training algorithm. Section IV (to
be added) reports numerical results. Section V concludes.
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Fig. 1. Proposed T-TransNet architecture. UE-side encoder applies (1) Learnable GLAQ activation; (2) column-wise trained ternary quantization within
multihead attention projections; (3) optional feature quantization for uplink bits. BS-side decoder mirrors TransNet with higher-capacity refinement. 1.58-bit
means ternary quantized value.

II. SYSTEM MODEL AND PROBLEM FORMULATION

We consider a single-cell downlink FDD massive MIMO
orthogonal frequency-division multiplexing (OFDM) system
with Nt BS transmit antennas and a single UE receive an-
tenna (Nr = 1). Let Ñc denote the total number of OFDM
subcarriers. The received symbol on subcarrier n is

yn = h̃H
nvnxn + zn, n = 1, . . . , Ñc, (1)

where h̃n ∈ CNt×1 is the downlink channel vector, vn the
precoder, xn the transmitted data symbol, and zn additive
noise. Stack the spatial-frequency domain channel vectors to
form H̃ = [h̃1, . . . , h̃Ñc

]H ∈ CÑc×Nt .

A. Angular–Delay Domain Sparsification

Following standard practice, we apply a 2D discrete Fourier
transform (DFT) across subcarriers and antenna indices to
expose angular–delay structure:

H = FcH̃FH
t , (2)

where Fc ∈ CÑc×Ñc and Ft ∈ CNt×Nt are unitary DFT
matrices over frequency and antenna dimensions, respectively.
Because multipath delay spread is limited, significant energy
concentrates in the first Na delay taps of H. We therefore
truncate H to its leading rows Na to obtain Ha ∈ CNa×Nt ,
reducing the dimensionality with the channel information.

B. Learning-Based Compression and Recovery

Let fC(·; ΘC) and fR(·; ΘR) denote the UE-side encoder
and BS-side decoder neural networks, respectively. The en-

coder maps the (vectorized) truncated channel to a length-M
latent vector v ∈ RM that is fed back over the uplink:

v = fC(Ha; ΘC), M = ηNaNt × 2, (3)

where η ∈ (0, 1] is the compression ratio and the factor of
two accounts for separate real and imaginary parts. After ideal
uplink transfer, the BS reconstructs

Ĥa = fR(v; ΘR), (4)

from which the full spatial-frequency domain estimate ̂̃H is
recovered by zero-padding and inverse transforms:

̂̃H = FH
c

[
Ĥa 0

]
Ft. (5)

C. Training Objective

The parameters (ΘC ,ΘR) are learned by minimizing a
distortion metric between Ha and its reconstruction. We adopt
mean-squared error (MSE) or normalized MSE (NMSE) in a
training set D:

min
ΘC ,ΘR

EHa∼D
[
∥Ha − fR(fC(Ha; ΘC); ΘR)∥22

]
(6)

III. PROPOSED T-TRANSNET ARCHITECTURE

In this paper, we propose T-TransNet which described in 1.

A. Design Overview With Transformer Encoder

T-TransNet inherits the encoder, decoder attention backbone
of TransNet [2] but introduces UE-side quantization and
activation compression motivated by the structure of attention
network. For completeness, consider the sequence of input
features in an MHA block as X ∈ RL×D. With Nh heads
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and dh = D/Nh, the k-th head forms query, key, and value
projections

Qk = XWQ
k ∈ RL×dh , (7a)

Kk = XWK
k ∈ RL×dh , (7b)

Vk = XWV
k ∈ RL×dh , (7c)

where WQ
k ,W

K
k ,WV

k are dense projection matrices. Scaled
dot-product attention computes similarity scores and attention
weights as

Mk = softmax

�
QkK

T
k√

dh

�
∈ RL×L, (8)

leading to the per-head output

Ak = MkVk ∈ RL×dh . (9)

The head outputs are concatenated and mixed linearly by an
output projection WO:

A = Concat(A1, . . . ,ANh
)WO. (10)

B. Ternary Quantization of Attention Projections

We convert linear project in III-A to ternary quantization
weight. Consider an linear matrix W ∈ Rm×n in an MHA
projection and an output projection. Our goal is to approximate
W̃ternary = αWsigned, where Wsigned ∈ {+1, 0,−1}m×n are
binary masks denoting positive and negative assignments and
scale factor α ∈ R. We begin with symmetric scaling α > 0
and define

[W̃ternary]ij =




+α, wij > ∆,

0, |wij | ≤ ∆,

−α, wij < −∆,

(11)

where threshold ∆ and scale α are chosen to minimize
∥W − αWsigned∥, as in ternary weight networks (TWN) [5],
[6]. A common closed-form heuristic is ∆ = 0.7 · E[|wij |].

C. Column-Wise Ternary Quantization

CSI matrices exhibit direction-dependent energy across
antenna dimensions; likewise, attention projections feeding
different heads or feature channels can have markedly different
dynamic ranges. We therefore generalize TTQ to column-wise
scaling: for output column j we learn (α+

j , α
−
j ,∆j). Quan-

tization follows with column-specific thresholds and scales.
At inference, multiplications reduce to additions/subtractions
gated by ternary masks; column-specific scales can be folded
into subsequent normalization layers, minimizing cost.

D. Gradient for Ternary Quantization.

Trained ternary quantization (TTQ) introduces α and ternary
weight W α− per layer and updates them via gradient descent
[5]. Let I+

j = {i : wij > ∆j} and I−
j = {i : wij < −∆j}.

Given loss L, gradients accumulate as

∂L
∂α+

j

=
�

i∈I+
j

∂L
∂w̃ij

,
∂L
∂α−

j

=
�

i∈I−
j

∂L
∂w̃ij

, (12)

Algorithm 1 Mini-batch Training Procedure for T-TransNet

Require: Batch of truncated channels {H(b)
a }Bb=1; learning

rates ηw, ηα
1: Stack real/imag parts and apply GLAQ activation (14)
2: for each attention projection matrix W do
3: Estimate per-column threshold ∆j = t ·Ei[|wij |] or use

learnable ∆j

4: Quantize: w̃ij ∈ {−αj , 0,+αj} via (11)
5: Forward propagate using ternary weights
6: end for
7: Compute loss L via NMSE (IV-A)
8: Backpropagate:

• Accumulate scale gradients ∂L/∂α±
j via (12)

• Use STE gradient (13) for latent wij

• Use (16) for GLAQ α gradients
9: Update:

• α±
j ← α±

j − ηα · ∂L/∂α±
j

• wij ← wij − ηw · ∂L/∂wij

• Update α in GLAQ with softplus parameterization

while gradients w.r.t. latent FP weights use scaled straight-
through estimators (STEs):

∂L
∂wij

=




α ∂L
∂w̃ij

, wij > ∆,
∂L
∂w̃ij

, |wij | ≤ ∆,

−α ∂L
∂w̃ij

, wij < −∆.

(13)

This scheme learns both scaling and assignments during
training and produces high-accuracy 2-bit models in large-
scale vision tasks [6].

To counteract accuracy loss from low-bit weights, we
introduce two mechanisms: (i) Learnable GLAQ activation,
applied to the pre-projection activations to compress mag-
nitude outliers; and (ii) column-wise ternary quantization,
which extends layer-wise scaling to per-output-column scaling,
capturing anisotropic channel statistics more faithfully.

A high-level block diagram is shown in Fig. 1.

E. Learnable GLAQ Activation

Let x denote an activation element (real-valued). We define
the generalized logarithmic activation quantizer (GLAQ) as

GLAQ(x;β, S) = sign(x) ·
log

�
1 + β |x|

�

log
�
1 + βS

�

S = max
x∈B

|x|
(14)

with learnable scale parameter α > 0 and batch (or running)
normalization scale S. The mapping is odd, monotone in |x|,
and compresses large magnitudes (logarithmic growth) into
[−1, 1]. Small magnitudes remain approximately linear (for
α |x| ≪ 1), while outliers are squashed, improving robustness
to subsequent low-bit weight multiplication.
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Gradients for GLAQ Activation: Ignoring the measure-
zero non-differentiability at x = 0, the partial derivatives used
in backpropagation are

∂GLAQ(x)

∂x
=

β

(1 + α|x|) log(1 + βS)
(15)

∂GLAQ(x)

∂β
= sign(x) · f(x;β)

[log(1 + βS)]
2 . (16)

f(x;β) =
|x|

1 + β|x|
log(1+βS)−log(1+β|x|)· S

1 + βS
(17)

In practice we clip ∂GLAQ(x)/∂x to a finite range and
treat S either as a per-mini-batch constant or as an exponential
moving average for stability. Parameter β is constrained via
β = softplus(β̃) during training.

F. Training Algorithm
Algorithm 1 summarizes mini-batch stochastic gradient

descent (SGD) for T-TransNet.

IV. EXPERIMENTAL RESULTS

This section will report reconstruction NMSE, parameter
counts, and encoder FLOPs for T-TransNet versus Transnet
across indoor and outdoor COST2100 scenarios and multiple
compression ratios η ∈ { 1

4 ,
1
8 ,

1
16 ,

1
32}. Moreover, our experi-

mental setup is followed by Section IV-A.
We deploy two variants of T-TransNet, namely T-TransNet-

A and T-TransNet-B, which differ in the scope of quantization.
T-TransNet-A applies quantization to all components, includ-
ing the multi-head attention (MHA) layers and the final linear
block. In contrast, T-TransNet-B restricts quantization to the
final linear block, which carries the main computational burden
due to the flattened vector representation.

Table I highlights the performance degradation observed
in the T-TransNet-A model. However, Table II shows that
T-TransNet-B achieves competitive results compared to the
original TransNet.

A. Simulation Setup

• Dataset: COST2100 indoor and outdoor; split as in [1],
[2].

• Channel dimensions: (Nt, Na) = (32,32).
• Training: Adam, batch size sets 300, learning rates sets

0.3, and cosine based schedule.
• Metrics: NMSE (dB), encoder FLOPs.

NMSE =

∥∥∥H− Ĥ
∥∥∥
2

2

∥H∥22
.

TABLE I
NMSE COMPARISON OF TRANSNET AND T-TRANSNET-A

η Method
NMSE

indoor (dB)

1/4
TransNet -32.38
T-TransNet-A -24.30

TABLE II
NMSE COMPARISON OF TRANSNET AND T-TRANSNET-B

η Method
NMSE

indoor (dB)
NMSE

outdoor (dB)

1/4
TransNet -32.38 -14.86
T-TransNet-B -29.40 -15.03

1/8
TransNet -22.91 -9.99
T-TransNet-B -24.02 -11.24

1/16
TransNet -15.00 -7.82
T-TransNet-B -17.35 -6.56

1/32
TransNet -10.49 -4.13
T-TransNet-B -11.83 -4.49

*T-Transnet terminated at epoch 5000.

TABLE III
COMPARISION OF MATRIX MULTIPLICATION BETWEEN 32-BIT AND

COLUMN-WISE TERNARY CASE.

Methodsa # of 32-bit scalar mul. # of bits

32-bit mnp 32mn
C-Ternary mp 2mn + 32n
Ternary 0 2mn

B. Complexity Considerations

Assume an m × n FP matrix in attention projection. FP
inference cost is mn MACs and mn parameters. A ternary
matrix stores a 2-bit code per element plus scale(s). With
layer-wise scaling, parameter storage reduces by 16× relative
to 32-bit float; with column-wise scaling, overhead adds O(n)
scalars. Arithmetic reduces because multiplications by ±1 be-
come adds/subtracts and zeros skip; hardware implementations
can further exploit sparsity when ∆j induces many zeros.
Section IV quantifies realized savings and UE latency.

In table II, we consider three matrix multiplication which
AB, AC, and AD where a 32-bit matrix A ∈ Rm×n, a 32-
bit matrix B ∈ Rn×p, a column-wise ternary matrix C ∈
[{−αj , 0, αj}n]pj=1, and a ternary matrix D ∈ {−1, 0, 1}n×p

V. CONCLUSION

We presented T-TransNet, a ternary attention network that
targets UE-efficient CSI feedback in FDD massive MIMO
systems. By combining trained ternary quantization of at-
tention projections with a learnable logarithmic activation
(GLAQ), the proposed architecture substantially reduces UE-
side parameter storage and computation while retaining and
in some regimes improving reconstruction accuracy relative
to full-precision attention baselines. Future work includes
adaptive bitrate control, joint pilot, feedback optimization, and
hardware co-design for ternary attention accelerators.
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