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Abstract—Inverse kinematics (IK) learning for robot arms
involves multiple objectives such as minimizing end-effector
position and orientation errors while respecting joint limits and
avoiding collisions. These objectives often progress at different
rates during training. In particular, position error tends to de-
crease relatively quickly, while orientation error improves more
slowly, which can lead to imbalance when losses are weighted
equally. We describe a Distance-to-Target Dynamic Weighting
(DTD-W) approach that adjusts task weights according to
their distance from predefined target losses, combined with an
uncertainty-based weighting scheme. Experiments on a Panda
7-DOF robot arm indicate that this combined method provides
a more balanced reduction of position and orientation errors
compared to fixed or single weighting strategies.

Index Terms—inverse kinematics, multi-objective learning,
loss weighting, uncertainty

I. Introduction

Training neural networks for robot arm IK often requires
balancing heterogeneous objectives. In our setting, the
network maps an end-effector pose (position and orien-
tation) to corresponding joint angles. During training,
we observe that the position loss decreases rapidly while
the orientation loss remains relatively high. Without a
mechanism to adapt the weights of these objectives,
one loss may dominate, leaving the other insufficiently
optimized.

Several methods have been proposed to balance multiple
losses automatically. Approaches such as GradNorm [1]
and Dynamic Weight Averaging (DWA) [2] adjust weights
based on gradient magnitudes or relative changes in loss.
Uncertainty-based weighting [3] normalizes losses accord-
ing to predicted noise levels. While effective in certain
settings, these methods do not explicitly incorporate
target performance levels, which are often available in
robotics tasks (e.g., desired error thresholds in millimeters
or degrees).

We consider a Distance-to-Target (DTD) weighting
strategy, which uses the normalized distance from each
loss to its predefined target. This is combined with
uncertainty-based weighting to account for task variability.
The aim is to improve balance between position and
orientation objectives in IK training.

II. Related Work

Dynamic weighting for multi-task learning has been
extensively studied in computer vision and robotics. Chen
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et al. [1] proposed GradNorm, which balances gradient
magnitudes to equalize task learning rates. Liu et al. [2]
introduced Dynamic Weight Averaging based on tempo-
ral loss changes; see also EMA-based weighting strate-
gies [4]. Multi-objective optimization approaches such as
MGDA [5] focus on Pareto efficiency but do not directly
encode task-specific thresholds. Our method differs in that
it makes explicit use of target losses, while also retaining
uncertainty modeling to adapt weights during training.

In the context of inverse kinematics (IK), neural net-
works have been widely explored as an alternative to
analytical solvers. Cursi et al. [6] proposed a feedforward
model that combines position and velocity errors under
fixed weighting to improve end-effector trajectory predic-
tion.

While these studies highlight the potential of neural
approaches for IK, they do not explicitly address the issue
of imbalanced loss terms or incorporate dynamic weighting
strategies. Some models achieve reasonable performance
without such mechanisms, yet challenges remain in balanc-
ing position and orientation accuracy, handling collision
avoidance, and enforcing joint constraints. More recently,
generative models have been proposed for IK [7], showing
improved precision over conventional neural methods.
This may be attributed to their inherent flexibility in
handling multi-objective trade-offs. Motivated by this,
we argue that introducing dynamic weighting into non-
generative neural IK frameworks can offer a practical
way to better manage competing objectives and further
enhance performance.

ITI. Methodology

A. Problem Setup

We train a ResNet-based network (1024 units, 5 residual
blocks) to map end-effector poses to joint angles for
a Panda 7-DOF arm. The loss is defined over three

objectives:

te{pos,ori,coll}

L= wy Ly,

where ¢ denotes position, orientation, and collision penal-
ties. Joint limit constraints are not treated as an explicit
loss term. Instead, we adopt a joint-limit-satisfying output
parameterization, in which the raw network outputs are
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passed through a bounded activation (sigmoid or tanh)
and linearly scaled to the range [gmin, ¢max]- This guaran-
tees that the predicted joint angles always remain within
their valid ranges without requiring an additional penalty
term.

B. Loss for Position and Orientation

For each predicted joint configuration ¢, forward kine-
matics was used to obtain the end-effector position p and
orientation R. The position loss was defined as the mean
squared error (MSE) between the predicted and target
positions:

Loos = 16— pll3- (1)

The orientation loss was defined using the geodesic
distance on SO(3) between the predicted and target
orientations:

(2)

—
Lo = arccos(traee(RR ) 1) 7

2

which measures the minimal rotation angle between two
rotation matrices.

C. Collision Loss

For collision avoidance, we adopt a capsule-based ap-
proximation of robot links, a common practice in robotics
for efficient distance computation. The collision loss is then
defined using a smooth penalty function on the minimum
capsule-to-capsule distance. We introduce a safety margin
of 5 mm: if the distance exceeds this margin, the loss
becomes nearly zero, whereas distances below the margin
incur increasing penalties. To ensure differentiability, we
use the softplus function as a smooth approximation of
the hinge loss:

Leon = 7 - log(1 + exp(2=4)) (3)
where d is the minimum distance, m is the safety margin
(5 mm), and 7 controls smoothness.

D. Distance-to-Target (DTD)

Let ¢ > 0 be a small constant. For each task ¢t €
{pos, ori, coll} with target L we define d\” as the
distance-to-target, oy as the scale factor, and wt(e) as the
dynamic weight:

0
Jo_ L
t L;arget + 8’
FIQ)
oy =100 - %, (4)
t 't
. d(e)
Wl = &

X4

Algorithm 1 Training with DTD + Uncertainty Weighting

Require: targets L;*"&°*

ay, small
1: for epoch e =1..F do
2: Sample batch (z,q); predict §; apply bounded
Scaling to [qglina qmax]

FK: (p,R) from §; compute Lpos, Lori; compute
Leon via capsule distances with softplus, margin m

, smoothing 7, margin m, scales

o

4: dy thra, wtl<— Z:dt

5: L(—ZtatwtﬁLt + IOgO't

6: Update network parameters and {o;} with AdamW
7: end for

E. Uncertainty-Weighted and Hybrid Losses

We compare two loss formulations: (i) an uncertainty-
weighted loss and (ii) a hybrid loss that additionally
applies DTD-based dynamic weights.

£ = (au st 1 +log o ). (5)
t
E}(;,)brid = Z{at wt(e) % Lge) + log O't:|. (6)

t
Here, oy is the fixed scale factor and wge) is the dynamic
weight; both apply only to the data term, while log o is
left unweighted. and o; > 0 is the learned task uncertainty
(we optimize s; = logo; for stability). Note that «y
and wt(e) are applied only to the data term, while the
regularizer log o, is left unweighted.

IV. Experiments

A. Dataset

The dataset was generated by uniformly sampling valid
configurations of the Panda 7-DOF robot. Each joint range
was divided into 16 intervals, and all possible combinations
were taken to ensure broad coverage of the configuration
space. Forward kinematics was then applied to compute
the corresponding end-effector poses, resulting in a total
of 32,462,548 samples. Each input is represented as a 7-
dimensional end-effector pose vector

z = [p,q] € R,

where p € R3 denotes the Cartesian position and q € R*
is the unit quaternion encoding orientation. The corre-
sponding joint angles obtained from forward kinematics
serve as training targets.

Note on dataset size. A full 167 grid would yield
268,435,456 joint combinations. We remove infeasible/du-
plicate configurations and apply stratified sampling under
self-collision filtering, resulting in 32,462,548 valid samples
used in our experiments.
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Fig. 1. Training results on Panda IK dataset. (a)(b) show the convergence of position and orientation losses across four settings (Baseline,
DTD only, Uncertainty only, DTD+Uncertainty). (c)(d) illustrate the weight dynamics of position, orientation, and collision terms under

different weighting strategies.

B. Training Setup

Each training epoch consists of 2,000,000 randomly
sampled data points, partitioned into 160,000 for training,
20,000 for validation, and 20,000 for testing. The network
is trained for 500 epochs in total.

The initial target losses and learning-rate settings are
not designed to immediately reach sub-millimeter preci-
sion. Instead, they are intended to (i) prevent excessive
disparity among the position, orientation, and collision
objectives, and (ii) promote rapid convergence to a rea-
sonable operating regime. Accordingly, in Stage 1 we set

ﬁ(l)

where the position loss target is chosen within the range
0.00009 to 0.0003 depending on the dataset statistics
and convergence behavior. The network learning rate
is initialized at Ir = 1 x 1074, while the uncertainty
parameters (s; = logo;) are updated with a reduced rate
of Ir x 0.1.

Once convergence is observed, we proceed to Stage 2
for fine-tuning with tighter objectives:

L) . = {pos : 0.000025, ori: 0.0175, coll : 0.009}.

In this stage, the network learning rate is reduced to Ir =
1.2 x 1075, and the uncertainty parameters are trained
under the same rule, Ir x 0.1 = 1.2 x 1076, This two-stage
procedure allows the network to first stabilize in a broad
feasible regime and then achieve higher precision through
gradual refinement.

C. Compared Methods

target = {POs 1 [0.00009 ~ 0.0003], ori : 0.0525, coll : 0.009}, e compare four weighting strategies:

o Baseline: equal weighting without DTD or Uncer-
tainty

e DTD only: distance-to-target dynamic weighting

o Uncertainty only: uncertainty-based weighting

e DTD + Uncertainty: hybrid combination of both
methods
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D. Results

Table T lists the best (minimum) losses attained
during training. The Baseline shows the largest posi-
tion MSE (0.000852mm?) and a relatively high orien-
tation error (0.12rad). DTD only reduces the position
MSE (0.000764 mm?) but slightly worsens orientation
(0.13rad). Uncertainty only achieves the lowest position
MSE (0.000268 mm?) with an orientation error of 0.08 rad.
The DTD+Uncertainty hybrid attains the best orien-
tation accuracy (0.06rad) while keeping position MSE
low (0.000447 mm?), yielding the most balanced overall
performance.

TABLE 1
Minimum Position MSE (mm?2) and Orientation Error (rad) Across
Weighting Strategies on Stage 1

Method Pos. MSE (mm?2)  Ori. Error (rad)
Baseline 0.000852 0.12
DTD only 0.000764 0.13
Uncertainty only 0.000268 0.08
DTD + Uncertainty 0.000447 0.06

Figure 1 illustrates the loss convergence patterns and
weight dynamics during Panda IK training. Panels (a) and
(b) show the learning curves of position and orientation
errors. In the Baseline, the position error decreases rapidly,
whereas the orientation error converges more slowly. When
applying DTD only, the position error improves but the
orientation error becomes less stable. In contrast, with
Uncertainty-based weighting alone, the orientation error
decreases more steadily. When DTD and Uncertainty are
combined, both errors converge below a certain threshold
in a balanced manner. This suggests that if the reduction
of losses is skewed toward one objective, the other may fail
to decrease sufficiently, highlighting the need for balanced
convergence.

Panels (c) and (d) compare the dynamics of task
weights. With DTD only (c), the weights are determined
solely by the relative size of the remaining distance to the
target loss. As a result, the ratio between position and
orientation weights remains nearly constant, consistent
with the weighting rule in Eq. (6). Although such a scheme
may appear to encourage balanced reduction of position
and orientation errors, the actual model behavior does not
reflect this; in practice, the weighting strategy does not
directly translate into proportional error reduction, which
prevents full attainment of the target losses. The gradual
increase in the collision weight is explained by the faster
reduction of position and orientation losses, which shifts
weight toward the relatively slower-decaying term.

Given that the Stage 1 results (Table I) show the
hybrid (DTD+Uncertainty) scheme yields the best overall
balance, we adopt the same hybrid loss for Stage 2.
Starting from the Stage 1 model, we fine-tune with
the tighter Stage 2 targets and reduced learning rates

TABLE II
Stage-2 Hybrid (DTD+Uncertainty) Results over 100 x 1,000
Evaluations

Metric Mean Std
0.000033 0.000005
2
Pos. MSE (mm®) (5.73 mm)  (2.25 mm)
. 0.063 0.0015
Ori. Error (rad) (3.61 deg) (0.86 deg)
0.0038 0.0013

Inference time (sec / query)

(0.0013 sec)  (0.0013 sec)

described earlier. We then evaluate by predicting joint
angles for 1,000 valid end-effector goals, repeated 100
times. The aggregated results (mean+std over 100 runs)
are summarized in Table II.

V. Discussion

Our experimental findings demonstrate that the com-
bination of the Distance-to-Target (DTD) strategy with
uncertainty weighting provides a method for balancing
heterogeneous IK objectives. We conducted a two-stage
training process. Initially, we used intentionally loose
loss targets to prevent large inter-task disparities and
facilitate rapid convergence to a reasonable solution space.
The subsequent Stage 2 involved fine-tuning with tighter
targets and reduced learning rates. This allowed the model
to further improve in a stable manner, resulting in mean
errors of a few millimeters (position) and a few degrees
(orientation). This enhanced performance came with a low
inference latency of a few milliseconds.

These results confirm the core intuition behind DTD: by
directing more weight toward underperforming objectives,
DTD focuses optimization where it is most needed, while
uncertainty weighting suppresses noise and instability,
making the overall training process more stable. This
stability is especially critical during fine-tuning, where
the learning rate is reduced and even small updates can
destabilize learning.

This approach provides a transparent and intuitive way
to manage task priorities by setting physically meaningful
targets (e.g., in millimeters or degrees). Our results suggest
that the hybrid scheme is not overly sensitive to the exact
target values within a reasonable range, although extreme
values may still disrupt the balance.

However, our study has several limitations. First, the
training and evaluation were based on poses generated
by forward kinematics with a simplified capsule-based
collision approximation, without modeling real-world ac-
tuation dynamics or sensor noise. Second, while we com-
pared our method against a baseline and single-weighting
strategies (DTD and Uncertainty only), we did not in-
clude other multi-objective optimization methods such as
MGDA or gradient-balancing variants. Such comparisons
would be informative but would have added considerable
complexity. Finally, collision was treated as a simple
geometric proximity objective, and richer constraints like
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environmental contact affordances were not considered.
These areas represent promising directions for future
research.

VI. Conclusion

We presented a hybrid loss weighting method for
IK learning that combines Distance-to-Target and
uncertainty-based weighting. The approach is simple to
implement, interpretable (targets in mm/deg), and ef-
fective at balancing position, orientation, and collision
objectives. On a Panda 7-DOF benchmark, the hybrid
method achieved the best overall trade-off on Stage 1
and further improved under Stage 2 fine-tuning with
tighter targets and reduced learning rates, reaching low
millimeter-scale position errors and few-degree orientation
errors at millisecond inference times.

Future work includes: (i) automatic or curriculum-based
target scheduling, (ii) broader comparisons with Pareto-
front multi-objective methods, (iii) real-robot validation
under sensing and actuation noise, and (iv) extension
to trajectory-level objectives (velocity/acceleration limits
and smoothness). We believe data-driven IK serves as a
crucial link, translating high-level perceptual information
like images and text into the low-level joint movements
that control a robot’s physical actions.
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