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Abstract—Unmanned Aerial Vehicles (UAVs) are increasingly
deployed in tactical and civilian missions, yet remain vulnerable
to stealthy replay and denial-of-service (DoS) attacks. This paper
presents a lightweight intrusion detection framework that inte-
grates explainable artificial intelligence (XAI) for UAV network
security. Using a cyber-physical UAV dataset and the WSN-
DS benchmark, we applied feature pruning, class balancing
with SMOTE, and trained Decision Tree and Random Forest
classifiers. The proposed system achieved 99.4% accuracy, with
near-perfect precision, recall, and F1-scores for replay and DoS
detection. To ensure transparency, SHAP and LIME were incor-
porated for global and local interpretability. Results demonstrate
that the framework is highly accurate, interpretable, and suitable
for edge deployment in resource-constrained UAV environments.

Index Terms—UAYV, Replay Attack, Denial of Service Attack,
explainable AI

I. INTRODUCTION

UAVs (drones) are cyber-physical systems whose safety
relies on integrity and timeliness of sensor and control mes-
sages exchanged across wireless links. A replay attack captures
legitimate packets and re-injects them later, thereby making
the system believe stale (but valid) measurements are current,
a stealthy attack that can destabilize control loops without re-
quiring the adversary to understand system dynamics. Replay
attacks are especially attractive to adversaries because they
often do not require breaking cryptography, simply reusing
previously captured traffic can be sufficient. Recent literature
highlights replay attacks across IoT, industrial control systems,
vehicular networks, and UAVs, and proposes detection and
mitigation strategies ranging from active watermarking and
probing signals to purely data-driven detection [1] [2] [3] [4].
Fig. 1 illustrates the replay attack scenario in UAV networks,
establishing the threat context for this study.

In a study conducted in [5], replay attacks were inves-
tigated, targeting Semiconductor Equipment Communication
Standard/Generic Equipment Model communications to com-
promise operation-based control systems in industrial envi-
ronments. A detection mechanism was implemented using a
simulated replay attack on Semiconductor Equipment Com-
munication Standard/Generic Equipment Model communica-
tion, focusing on identifying and preventing the malicious
retransmission of captured and recorded control messages. The
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research was carried out in the domain of industrial control
system cybersecurity, emphasizing the protection of Internet
Protocol-based communication in manufacturing and automa-
tion processes.The study addressed replay attacks effectively
within Semiconductor Equipment Communication Standard-
/Generic Equipment Model communication; however, it did
not extend its applicability to drone networks, where mobility,
wireless communication, and resource constraints introduce
distinct vulnerabilities. Furthermore, the work lacked inte-
gration of Visual Explainable Artificial Intelligence (VXAI)
and Quantitative Explainable Artificial Intelligence (QXAI),
thereby limiting transparency and interpretability of the detec-
tion mechanism, which are critical for trust and operational
validation in safety-critical domains like unmanned aerial
vehicle (UAV) networks.
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Fig. 1: This figure illustrates a replay attack scenario in UAV

networks, where a malicious UAV intercepts and later resends
encrypted messages to deceive the Backbone UAV. [2]

In a research conducted in [6], stealthy replay attacks were
addressed, which are a form of deception attack in cyber-
physical systems (CPS) where previously recorded legitimate
data are maliciously re-injected into the system to degrade
performance without requiring system knowledge. A data-
driven detection approach was employed, utilizing moving
window subspace identification to model the system in real
time, an output coding strategy to transform replay attacks into
detectable additive attacks, and an H-infinity filter to estimate
states robustly in the presence of noise and modeling errors.
The research was carried out in the domain of cyber-physical
systems security, with applications demonstrated on both linear
motor and nonlinear robotic systems. The study addressed
stealthy replay attacks in CPS but did not consider UAV
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TABLE I: Comparative Analysis of Existing Works and Proposed Approach

Work Focus Gap Our Contribution

Al-Shareeda et al. Replay attack detection in Industry 4.0  Not UAV-specific, no XAl integra-  UAV-focused IDS with replay + DoS detec-
(2022) [5] (SECS/GEM). tion. tion, XAl support.

Zhang et al. (2024)  Data-driven replay attack detection in ~ No UAV context, lacks VXAI/QXAI.  UAV-tailored detection with SHAP & LIME
[6], CPS. for transparency.

Shen & Qin (2024)  Replay + FDI attack detection in power ~ Not UAV, no explainability. UAV network IDS with explainable Al and
[7] grids. blockchain logging.

Thekoronye et al. IDS for Military UAV networks (DoS,

No replay attack detection, no XAl

Extends coverage to replay + DoS with XAI

(2022) [8] Probe, U2R, R2L). interpretability.
Thekoronye et al. DroneGuard: IDS for UAVs (GPS No replay attack, lacks QXAIL Covers both replay & DoS; integrates VXAI
(2025) [9] spoofing, DoS) with VXAL & QXAL

Proposed Work UAV IDS using DT & RF with

SHAP+LIME.

Fills gap of replay+DoS detection
and explainability.

High-accuracy IDS (99.4%), XAl-based in-
sights, blockchain evidence.

networks and lacked VXAI and QXAI, limiting applicability
and interpretability.

In the study [7], replay attacks and false data injection
attacks were addressed, both targeting supervisory control and
data acquisition systems to disrupt power system operations
by falsifying meter measurements. Random matrix theory was
employed to detect hybrid attacks on static state estimation,
differentiate false data injection attacks from replay attacks,
and localize falsified measurements, with a singular value
decomposition—convolutional neural network method used for
classification and localization. The research was carried out
in the domain of power system cybersecurity, with validation
conducted on the Institute of Electrical and Electronics Engi-
neers 14-bus system and Institute of Electrical and Electronics
Engineers 57-bus system. The study effectively detected re-
play and false data injection attacks in SCADA-based power
systems using random matrix theory and SVD-CNN, but it
did not address UAV networks, and lacked VXAI and QXAI
integration for interpretability and trust.

The paper “Hierarchical Intrusion Detection System for
Secured Military Drone Network: A Perspicacious Approach”
presents the design of a hierarchical anomaly-based Intrusion
Detection System (IDS) tailored for military Internet of Drones
(M-IoD) networks. An optimized Random Forest classifier was
developed using Randomized Search Cross-Validation (RSCV)
for hyperparameter tuning, ensuring lightweight computation
suitable for drones with limited energy and payload capac-
ity. The Pearson Correlation Coefficient (PCC) was applied
for feature selection, reducing complexity while maintaining
detection accuracy. The proposed IDS was validated with the
NSL-KDD dataset, achieving a high F1-score of 96.38%, low
mean squared error (0.13), and efficient training time (749
ms), outperforming several state-of-the-art machine learning
models in detecting Denial of Service (DoS), Probe, User-to-
Root (U2R), and Root-to-Local (R2L) attacks [8]. The IDS
showed strong results on NSL-KDD for DoS, Probe, U2R,
and R2L attacks, but it was not tested on real UAV data, did
not address replay attacks, and lacked VXAI and QXAI for
interpretability.

In prior research, a lightweight and explainable intrusion
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detection framework, DroneGuard, was proposed to enhance
the security of drone networks. The framework was designed
to mitigate two critical threats, namely Global Positioning
System (GPS) spoofing attacks and Denial of Service (DoS)
attacks, through the application of supervised machine learning
models. To improve the interpretability of the system, Shapley
Additive Explanations (SHAP) were incorporated, enabling vi-
sualization of feature contributions and fostering transparency
and trust in the decision-making process of the model [9].
This study did not address replay attack. Also, it only covered
visual explainable artificial intelligence (VXAI) but did not
cover quantitative explainable artificial intelligence (QXAI).

This work will include the following contributions:

« An intrusion detection system was developed for UAV
networks, capable of effectively detecting replay and
denial-of-service (DoS) attacks through Decision Tree
and Random Forest classifiers demonstrating strong per-
formance metrics on cyber-physical UAV and WSN-DS
datasets.

Comprehensive explainability and forensic transparency
were provided by integrating SHAP and LIME methods
for both global and local interpretability, with all detected
threats immutably recorded using blockchain technology
to ensure traceability and tamper-resistant evidence.

A performance comparison of classifiers was done us-
ing WSN-DS dataset to investigate the best performing
classifier of which Random Forest emerged as the best.

The remainder of this paper is organized as follows: Section
I describes the proposed methodology, including data pre-
processing, feature selection, class balancing, model training,
and integration of explainable Al techniques with blockchain-
based logging. Section III presents the experimental setup and
results, detailing dataset description, model evaluation, and
performance comparison. Section IV concludes the paper and
outlines directions for future research.

II. METHODOLOGY

The proposed UAV Intrusion Detection System (UAV-IDS)
follows a modular, sequential workflow to ensure robust de-
tection of replay and denial-of-service (DoS) attacks while



maintaining transparency through explainable Al techniques.
The process begins with data acquisition from UAV telemetry
streams, network taps, and capture files. The dataset—such as
the Cyber-Physical Dataset for UAVs & WS-DS—is imported
into Google Colaboratory for pre-processing.

Fig. 2 presents the overall workflow of the proposed UAV-
IDS, showing the sequential process from dataset acquisition
and preprocessing to explainable detection and blockchain

logging.

Data Sources
(UAV telemetry, network
taps, capture files)

Import Dataset (Cyber-Physical Dataset
for UAVs & WSN-DS)
to Google Colaboratory

Preprocessing &
Feature Selection

!

Class Balancing

I

Feature Scaling

I

Model Training & Validation

|

Deployment & Inference

I

Detect Replay or DOS Attack

!

Apply Model Explainability

Store Detected Attacks in The
Blockchain(Purechain)

Fig. 2: Workflow of the proposed UAV Intrusion Detection
System (UAV-IDS), illustrating the end-to-end process from
dataset acquisition, pre-processing to attack detection and
secure blockchain-based result storage.

A. Workflow Overview

1) Preprocessing & Feature Selection: Irrelevant identifiers
(e.g., MAC addresses, port numbers) are dropped to
prevent overfitting. Missing values are handled via impu-
tation or removal. A Pearson correlation matrix is com-
puted, and highly correlated features (7¢orr > 95(thresh-
old)) are pruned to reduce redundancy.
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2) Class Balancing: The cleaned dataset is split into training
and testing sets using an 80/20 ratio with a fixed ran-
dom seed (RS). To address imbalance between benign
and attack classes, the Synthetic Minority Oversampling
Technique (SMOTE) is applied to the training set only.
Feature Scaling: A StandardScaler is fitted on the
balanced training set and applied to both training and
testing sets to normalize feature distributions.

Model Training & Validation: A tuned Decision Tree
Classifier with parameters Opr is trained on the scaled
dataset. Predictions are made on the test set, and per-
formance is evaluated using accuracy, precision, recall,
F1-score, and confusion matrix metrics.

Deployment & Inference: The trained pipeline is de-
ployed to an edge gateway or ground station for real-time
attack detection. Detected threats are stored securely in
the blockchain (Purechain) for forensic integrity.
Explainability Module: SHapley Additive exPlanations
(SHAP) are used for global and local feature impor-
tance visualization, while Locally Interpretable Model-
Agnostic Explanations (LIME) can provide lightweight
instance-specific explanations.

Blockchain Storage of Detected attacks: Detected re-
play or DoS attack records are immutably stored in
the Purechain blockchain, ensuring tamper-proof logging,
traceability, and verifiable forensic evidence.

3)

4)

5)

6)

7

B. Algorithmic Implementation

The complete process is formalized in Algorithm 1, which
details the operational sequence from data ingestion to
blockchain storage:

DATASET DESCRIPTION

Two benchmark datasets were utilized for validation: the
Cyber-Physical UAV Dataset [10], encompassing benign, re-
play, and DoS attack traffic representative of UAV network
environments; and the Wireless Sensor Network Dataset from
Kaggle (WSN-DS), including various network attacks such
as Flooding, TDMA, Grayhole, and Blackhole. Both datasets
underwent extensive preprocessing including removal of re-
dundant identifiers, handling missing values, correlation-based
feature pruning, class balancing with SMOTE, and feature
standardization, ensuring robust and generalizable model train-
ing for UAV-specific and broader network intrusion scenarios.

III. EXPERIMENTAL SETUP AND RESULT

Experiments were conducted using five machine learning
classifiers, Decision Tree, Random Forest, Logistic Regres-
sion, Gaussian Naive Bayes, and K-Nearest Neighbors—on
a cloud-based platform. The Decision Tree achieved 99.40%
accuracy on the UAV dataset with near-perfect F1 scores for
replay and DoS attacks. Random Forest demonstrated superior
performance on the WSN-DS dataset with F1 scores above
0.99 for most attack types. Explainability tools SHAP and



Algorithm 1: UAV Intrusion Detection System (IDS)
with Explainable Al (SHAP & LIME)

1 Input: D,,, ( dataset: Cyber-Physical UAV Dataset and
WSN-DS), 7corr (correlation threshold), Colgrop (columns

to drop), RS (random seed), ©Opr (Decision Tree
hyperparameters) OQutput: metrics (evaluation results),
SHAPvalues’ LIMEeXp

Dejean < DropColumns(Dyay, Colgrop) Deiean <
HandleMissing( Dcjean, method = “impute/drop™)
Corry; + ComputeCorrelation(Dejean|Features))
Features < PruneCorrelated(Corrys, Teorr)

X,y + SplitFeaturesLabels( Dqjeqn, Featuresg, “class”)
KXirainy Xtests Yurains Yrest <— TrainTestSplit(X, y, ratio =

0.8,7s = RS)
Xioins Yian SMOTE_Resample( Xiin, Yirain, auto”)

scaler < FitScaler( X

train)
S
Xn < Transform(scaler,

X res
train
X5 . < Transform

)
test (scaler, Xtest)
model < TrainModel(DecisionTree, X, yie , Opr)

Ypred <— Predict(model, X ) metrics <

Evaluate (Yest, Ypred, { "Acc”, ”Prec”, ”Rec”, ”F1”,"CM”})

SHAP;4jyes — ComputeSHAP(model, X7 )
LIME,,, < ComputeLIME(model, X, i) Return
{metrics, SHAP ,jyes, LIME,,, } Save

{model, scaler, Features,|, RS, Colgrop, Opr}

Store Detected Threats in the blockchain

LIME provided critical insights into feature importance and
individual predictions, while blockchain integration enabled
tamper-proof logging of detected intrusions, enhancing foren-
sic reliability.

Confusion Matrix
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Fig. 3: This confusion matrix shows high classification ac-
curacy of 99.1% and an overall Fl-score of 0.991, with
minimal misclassifications mainly between Replay and DoS
attack classes for Cyber-Physical UAV Dataset .

Experimental evaluation is first demonstrated in Fig. 3 with
a confusion matrix achieving 99.1% accuracy and an overall
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F1-score of 0.991, with only minor misclassifications between
Replay and DoS. To enhance interpretability, Fig. 4 and Fig.
5 illustrate Replay and DoS predictions clarified by feature
contributions, demonstrating how the model reaches confi-
dent decisions. Fig. 7 shows SHAP-based feature importance,
where timestamp ¢ dominates across Replay, benign, and DoS
classifications.

NOT 1 1

timestamp_c <=-0.79
030

Prediction probabilities

benign o[G0
Replay 1 [ 1.00
DoS 2000 ]

ip flags <=-0.27
0.06
ip.src <=-0.59
0.02
-1.03 < wlan.ta <= 0.57,
0.01

Value

ip.id <=-0.27

0.01

wlan fe.subtype <=-1.15
001

frame.len <=-0.60

001

wlan seq <=-0.84

0.01

tep.seq_raw <=-0.23

0.01

frame.number <=-0.77

0.01

frame number -1.12

Fig. 4: The model predicts Replay (class 1) with 100% prob-
ability, driven mainly by orange features like timestamp_c,
ip.src, and wlan.fc.subtype, which outweigh opposing teal
features supporting benign for Cyber-Physical UAV Dataset.

Prediction probabilities NOT | 1
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Replay 1 Iis.nfslags =027
DoS 2 [ 1.0 tocgsccuaw =023
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-0.63
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Fig. 5: The LIME plot for Cyber-Physical UAV Dataset shows
the model predicted DoS (probability=1.00), with key features
like low timestamp_c, ip.src, and wlan.ra (all orange) strongly
driving this classification.

For the broader WSN-DS dataset, Fig. 6 provides a con-
fusion matrix confirming strong performance across Normal,
Flooding, TDMA, Grayhole, and Blackhole classes, with
minimal confusion. Fig. 9 complements this by summarizing
global SHAP feature impacts across these classes, emphasizing
ADV_S and SCH_S as most influential. Fig. 8 highlights



a case where the model predicts Normal traffic with 100%
certainty, reinforcing its reliability in benign recognition.
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Fig. 6: The confusion matrix for WSN-DS dataset shows
high accuracy and strong Fl-scores, with most samples
correctly classified: 67,846 Normal, 633 Flooding, 1,315
TDMA, 2,870 Grayhole, and 1,947 Blackhole. Misclassifi-
cations are minimal, mainly between TDMA-Normal and
Grayhole—Blackhole.

timestamp_c |

frame.number [
wlan.seq
time_since_last_packet
wlan.ta
wlan.ra
wlan.fc.subtype
wlan.fc.type
data.data
tcp.seq_raw
tcp.ack_raw
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ip.flags
ip.src
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frame.protocols
mmm Class 2 DoS attack
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mean(|SHAP value|) (average impact on model output magnituds

Fig. 7: shows the SHAP-based feature importance per class,
highlighting timestamp_c as the most influential feature for
Replay, benign, and DoS attack classifications for Cyber-
Physical UAV Dataset .

Table III presents a comparative analysis of five machine
learning classifiers on the WSN-DS dataset. Results show
that Random Forest consistently outperformed other models,
achieving the highest precision, recall, and F1-scores across
most attack classes, with overall accuracy exceeding 99%.
The Decision Tree classifier also demonstrated strong perfor-
mance but showed reduced effectiveness in minority classes
such as TDMA and Grayhole compared to Random Forest.
Logistic Regression, Gaussian Naive Bayes, and K-Nearest

NOT 1 1

Prediction probabilities

ADV_S <=-0.36
Normal 0 [N 1.00 css
Flooding 1
TDMA 2
Grayhole 3 Time <=-086[
Blackhole 4 B DATA S>-0.38
AIA_5>-0.

.00
who CH <=-0.74
.00
send_code >-0.37
0.00
SCH_S <=-0.36|
0
Dist_To_CH >-0.37
0

DATA R <=-0.44
.00

Fig. 8: The model predicts NOT-1 (Normal) on WSN-DS
dataset with 100% probability, mainly due to strong oppos-
ing evidence from teal-highlighted features (ADV_S, Time,
SCH_S, Dist_To_CH).

~ov_s [
expaned Energy |[NINNEENN
dist_cH_To_as [N
oata R [N
Data_sent_To_gs [l
who cH [l
Time [l
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joins i
Dist_To_CH |
Rank |
DATA S |

send_code | ™= Class 3 Grayhole
mmm Class 4 Blackhole
SCH_R | mmm Class O Normal
Is.cH | = Class 2 TDMA
mmm Class 1 Flooding
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mean(|SHAP value|) (average impact on model output magnitude)

Fig. 9: The SHAP summary plot for WSN-DS dataset shows
that ADV_S and SCH_S are the most influential features
across all five classes (Normal, Flooding, TDMA, Grayhole,
Blackhole).

Neighbors achieved competitive results on certain classes but
suffered from either lower overall accuracy or class-specific
misclassifications. These findings highlight Random Forest as
the most robust and generalizable model for heterogeneous
UAV network attack scenarios, while Decision Tree remains
a lightweight alternative with competitive performance.

TABLE II: Performance Evaluation with Related Works

Authors Al model  Replay Attack Ac- Dos  Attack  XAI
curacy Accuracy

(5] — — — —

[6] — > 95% — —

[71 SVD- < 100% — _

CNN

[8] RF — 99.37 —

[91 DT — 99.56% SHAP

[11] RF 99.6% 99.5% —

Ours DT & RF  99.4% 98.5% SHAP + LIME
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TABLE III: Performance Comparison of based on WSN-DS
Dataset

Model Class Precision Recall F1-Score Accuracy
Logistic Regres- 0 0.9706 0.9697 0.9701 0.9541
sion
1 1.0000 1.0000 1.0000 1.0000
2 0.9820 0.9268 0.9536 0.9910
3 0.5011 0.5961 0.5444 0.9583
4 0.6347 1.0000 0.7766 0.9974
GaussianNB 0 0.9686 0.9773 0.9729 0.9543
1 0.9141 0.9953 0.9529 0.9999
2 0.9894 0.9202 0.9535 0.9895
3 0.9715 0.9847 0.9781 0.9611
4 0.9800 0.9893 0.9846 0.9967
KNeighbors 0 0.9967 0.9803 0.9884 0.9706
1 0.8829 0.9970 0.9364 0.9999
2 0.9208 0.9443 0.9324 0.9935
3 0.9836 0.9905 0.9870 0.9613
4 0.9898 0.9979 0.9938 0.9973
Random Forest 0 0.9988 0.9969 0.9979 0.9542
1 0.9188 0.9968 0.9561 0.9939
2 0.9202 0.9447 0.9323 0.9934
3 0.9839 0.9903 0.9871 0.9612
4 0.9898 0.9979 0.9938 0.9973
Decision Tree 0 0.9987 0.9920 0.9953 0.9543
1 0.9301 0.9843 0.9564 0.9935
2 0.7416 0.9461 0.8306 0.9756
3 0.9812 0.9876 0.9844 0.9608
4 0.9883 0.9928 0.9905 0.9969

Finally, Table II compares the proposed framework against
related works in replay and DoS attack detection.

Prior studies often focused on either replay or DoS attacks
and, in many cases, lacked explainability. For example, Zhang
et al. [6] achieved high replay detection accuracy in generic
CPS but did not consider UAV networks, while Ihekoronye
et al. [7] demonstrated strong DoS detection but without
replay attack coverage or XAl integration. Similarly, Shen and
Qin [8] addressed replay and false data injection in power
grids, yet without applicability to UAVs. In contrast, our sys-
tem uniquely achieves high detection accuracy for both replay
(99.4%) and DoS (98.5%) attacks, while incorporating SHAP
and LIME for interpretability. This dual focus on accuracy and
explainability establishes the novelty and practical value of our
approach in UAV network security. Unlike prior works that
addressed either Replay or DoS and often lacked explainable
Al our approach uniquely covers Replay, DoS, and integrates
XAI in the UAV domain for transparent and reliable UAV
decision-making in mission-critical environments.

IV. CONCLUSION AND FUTURE WORK

This paper proposed a lightweight and explainable intrusion
detection system (IDS) tailored for UAV networks, focusing
on detecting replay and denial-of-service (DoS) attacks. By
combining feature-optimized preprocessing, Decision Tree and
Random Forest classifiers, and explainability methods (SHAP
and LIME), the system achieved near-perfect accuracy on
both UAV-specific and WSN-DS datasets. Unlike prior works
that addressed either replay or DoS attacks without trans-
parency, our framework integrates high detection accuracy
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with interpretability, making it suitable for deployment in
resource-constrained UAV environments. Future research will
extend this work by validating the IDS on real UAV testbeds,
exploring adaptive learning for evolving threats, and integrat-
ing cooperative detection across drone swarms for enhanced
resilience.
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