
KubeScribe: LLM-Driven Automation of Runtime
Security Policies in Cloud-Native Environments

Jaeyoung Lee
Department of AI-Based Convergence

Dankook University
leeja042499@dankook.ac.kr

Jaehyun Nam∗

Department of Computer Engineering
Dankook University

namjh@dankook.ac.kr

Abstract—Cloud-native infrastructures built on Kubernetes
accelerate deployment and operations but broaden the runtime
attack surface beyond traditional defenses. Runtime security
solutions enforce fine-grained policies at the kernel and orches-
tration layers, yet policy authoring remains complex due to
heterogeneous schemas and rapidly evolving workloads. Existing
automation approaches focus mainly on network rules or syscall-
level seccomp profiles, leaving system-level runtime policies unex-
plored. We present KubeScribe, the first framework to automate
file-, process-, and syscall-aware runtime security policies using
large language models. KubeScribe integrates runtime log analysis
with LLM-based synthesis and applies dual validation (CRD
schema and resource-level checks) to ensure safe deployment.
Evaluations on KubeArmor, Tetragon, and Cilium show com-
pile success rates improving from below 10% to above 66%
and coverage exceeding 90%, with substantial gains in BLEU,
ROUGE, and METEOR metrics. These results demonstrate that
KubeScribe provides a practical and generalizable path toward
automated runtime security in Kubernetes environments.

Index Terms—Runtime Security, Policy Automation, LLM

I. INTRODUCTION

Cloud-native computing has reshaped the design and de-
ployment of modern software systems. Containers encapsulate
application code, libraries, and dependencies into portable
units, enabling lightweight, reproducible execution across het-
erogeneous environments. Orchestration platforms such as Ku-
bernetes [1] have become the de facto standard for managing
these workloads, offering automated scaling, rolling updates,
and resilient deployment strategies [2]. These capabilities
accelerate software innovation, yet also create infrastructures
that are highly dynamic and distributed. The runtime attack
surface expands as containers are created and destroyed in real
time, service meshes and container network interfaces (CNIs)
dynamically reconfigure network paths, and workload behavior
changes with each software update [3]. Conventional defenses
such as firewalls, intrusion detection systems, and image
scanning, while valuable at the perimeter, are insufficient to
prevent runtime compromise once workloads are active.

To address these challenges, the focus of cloud-native
security has shifted toward runtime monitoring and enforce-
ment [4]. Runtime security solutions instrument workloads
using eBPF to observe fine-grained system behavior, including
system calls, file I/O, process executions, and network flows.

* Jaehyun Nam (namjh@dankook.ac.kr) is the corresponding author.

By enforcing policies at the kernel or orchestration layer,
these solutions can detect and block malicious activity as it
occurs. Representative systems include KubeArmor [5] and
Tetragon [6], which provide host-level controls over files and
processes, and Cilium [7] or Kubernetes Network Policy [8],
which regulate inter-service communication. Together, these
systems form the backbone of runtime protection for Kuber-
netes environments. Their effectiveness, however, hinges on
the availability of precise, workload-aware policies. Writing
such policies is a complex and error-prone task: schemas
differ across enforcement engines, legitimate behaviors evolve
rapidly with code and configuration changes, and mistakes can
either disrupt application availability through excessive restric-
tion or expose vulnerabilities through under-specification.

The difficulty of authoring policies has motivated research
on automation. Log-based approaches [9], [10] attempt to
infer policies by analyzing observed runtime events, achieving
reasonable accuracy for specific engines. However, they lack
expressiveness, are tied to engine-specific log schemas, and
cannot generalize across heterogeneous platforms. LLM-based
approaches [11] offer greater flexibility by translating natural
language prompts into policies, but in practice they require
operators to specify exact resource paths and arguments, which
is impractical in complex deployments. More importantly,
existing work has concentrated primarily on network policies
or syscall-only seccomp profiles. While useful in isolation,
these abstractions do not capture the contextual enforcement
semantics required by modern runtime security engines. To
the best of our knowledge, no prior research has demonstrated
LLM-driven automation of system-level runtime security poli-
cies for engines such as KubeArmor or Tetragon, which
enforce contextual rules across files, processes, and syscalls.

This paper presents KubeScribe, a Kubernetes-native frame-
work that advances policy automation beyond prior work
by supporting not only network rules but also fine-grained
system-level runtime security policies. Unlike previous ap-
proaches focused narrowly on network segmentation or syscall
whitelisting, KubeScribe targets comprehensive enforcement
engines including KubeArmor and Tetragon, enabling con-
textual enforcement of files, processes, and syscalls. To our
knowledge, this is the first study to apply large language
models (LLMs) to the automation of system-level runtime
policies, filling a critical gap in current research.

1791979-8-3315-5678-5/25/$31.00 ©2025 IEEE ICTC 2025

KubeScribe introduces two key innovations. First, it tightly
integrates runtime log analysis with LLM synthesis, enriching
abstract user intents with observed execution paths and work-
load context before translating them into engine-specific poli-
cies. This hybrid design overcomes the brittleness of purely
log-based methods, which lack generality, and purely LLM-
based methods, which lack contextual grounding. Second, it
implements a robust dual validation pipeline that combines
CRD schema verification with resource-level checks. This
ensures that generated policies are not only syntactically
correct but also semantically aligned with actual workloads,
providing deployable outputs that avoid service disruption.
Together, these mechanisms deliver higher accuracy, stronger
reliability, and safer operation.

We implement and evaluate KubeScribe on Kubernetes
microservice deployments with KubeArmor, Tetragon, and
Cilium. Using QLoRA-fine-tuned LLMs, KubeScribe raises
compile success rates from below 10% to above 66% and
achieves over 90% coverage. It also improves BLEU, ROUGE,
and METEOR scores, demonstrating linguistic fidelity and
practical deployability. These results confirm that KubeScribe
provides a unified, low-overhead, and effective path toward
automated runtime protection in cloud-native environments.
Contributions. This paper makes the following contributions:

• We design an end-to-end automated pipeline spanning log
collection, intent parsing, policy synthesis, validation, and
enforcement, enabling integrated runtime security policy
generation.

• We introduce a hybrid approach that couples runtime log
analysis with large language model synthesis, transform-
ing abstract intents into precise, engine-specific policies
without requiring manual resource specification.

• We propose a dual validation pipeline that combines CRD
schema checks with resource-level consistency verifica-
tion, preventing syntax errors and reducing false positives
and negatives to ensure safe deployment.

Paper Organization. The remainder of this paper is organized
as follows. Section II introduces runtime security and LLM
fine-tuning, and outlines challenges. Section III presents the
design of KubeScribe. Section IV shows evaluation results.
Section V discusses related work, and Section VI concludes.

II. BACKGROUND AND MOTIVATION

A. Cloud-Native Environments and Runtime Security
Cloud-native architectures combine containerized microser-

vices, ephemeral workloads, automated CI/CD pipelines, au-
toscaling, and service meshes, which continuously and often
unpredictably reshape system topology and trust boundaries in
highly dynamic environments. Traditional monolithic systems
maintained relatively stable host perimeters, where network
firewalls and pre-deployment checks could effectively mitigate
many common risks. In cloud-native settings, however, the
constantly shifting attack surface makes conventional defenses
inadequate, while threats such as container escapes, supply
chain compromises, and configuration drifts introduce funda-
mentally new and dangerous privilege exposures [3], [4].

apiVersion: security.kubearmor.com/v1
kind: KubeArmorPolicy
metadata:
name: kubescribe-policy
namespace: kubescribe

spec:
selector:
matchLabels:
app: nginx

process:
matchDirectories:
- dir: /usr/bin/
recursive: true

action: Allow

apiVersion: security.kubearmor.com/v1
kind: KubeArmorPolicy
metadata:
 name: kubescribe-policy
 namespace: kubescribe
spec:
 selector:
 matchLabels:
 app: nginx
 fileRules:
 - operation: "EXEC"
 path: "/usr/bin/cat"
 action: "ALLOW"

User Prompt Fine-tuningLLM Engine

Fig. 1: Impact of QLoRA fine-tuning on policy generation. The
fine-tuned LLM generates accurate and generalized policies
aligned with user intent, unlike the overly specific rules of an
unfine-tuned model.

Runtime security addresses this gap by enabling pipelines
that monitor execution-time behaviors with low latency. eBPF-
based mechanisms insert lightweight probes into the kernel to
expose contextual event streams, including system calls, file
access attempts, process creation, and network connections.
These events can be aggregated into workload-specific be-
havioral profiles, supporting behavior-aware policies and real-
time responses. By bridging the gap between deployment-
time configurations and runtime activities, runtime security
has become indispensable for constraining the attack surface
of production infrastructures.

B. Large Language Models with Fine-tuning

Large Language Models (LLMs) have expanded from nat-
ural language tasks into domains requiring structured outputs
such as code or configuration generation [12]. However, pre-
trained LLMs are trained on general-purpose corpora, limiting
their ability to capture domain-specific formats and structural
conventions [13]. Without adaptation, they often generate syn-
tactically valid but semantically inconsistent security policies,
where strict schemas and field relationships must be preserved.

Fine-tuning has emerged as a practical approach for adapt-
ing general-purpose models to specialized domains [14].
Methods such as LoRA (Low-Rank Adaptation) and QLoRA
(Quantized LoRA) [15], [16] provide parameter-efficient adap-
tation without retraining full models. These methods allow
models to internalize domain-specific structures, improving
the fidelity of generated artifacts such as Kubernetes policies.
Figure 1 shows that QLoRA fine-tuning produces generalized
and reusable KubeArmor policies aligned with operator intent,
whereas unfine-tuned models often generate brittle rules. In
short, while LLMs can encode complex patterns, their reliable
use in runtime security depends on lightweight fine-tuning and
exposure to structured policy corpora.

C. Challenges in Policy Automation

Policy-based security frameworks are the de facto means of
enforcing runtime protection in cloud-native systems. How-

1792

ever, writing such policies requires precise specification, and
the quality of manually authored rules is highly dependent on
operator expertise. In practice, policy quality varies signifi-
cantly with operator skill, leading to risks such as blocking
essential services or permitting malicious actions. To mitigate
this challenge, recent studies have explored automated policy
generation. Existing approaches can be broadly classified into
log-based methods and LLM-based methods.

1) Limitations of Log-based Approaches: Log-based ap-
proaches [17]–[19] generate policies by collecting and ana-
lyzing runtime events. When logs are comprehensive, they
can achieve relatively high accuracy for the target security
engine. However, these methods are inherently tied to the event
formats and schemas of specific engines, making consistent
cross-engine policies difficult to achieve. They also assume
that observed logs sufficiently represent legitimate workload
behavior, which is not always the case in dynamic environ-
ments. Furthermore, logs often lack ground truth labels distin-
guishing benign from malicious actions, forcing tools to treat
all observed behaviors as valid. This limitation undermines
reliability and introduces risks of codifying insecure practices
into policies. As a result, log-based automation struggles in
multi-engine environments where systems such as KubeArmor,
Tetragon, and Cilium must coexist and remain consistent.

2) Limitations of LLM-based Approaches: LLM-based ap-
proaches [11], [20] generate policies directly from natural
language prompts, offering tool-agnostic flexibility and broad
adaptability. In theory, this paradigm allows operators to
express high-level intents, which the model translates into
precise enforcement rules. In practice, however, operators
often lack the deep system-level insight required to craft
accurate prompts. When prompts are underspecified or am-
biguous, generated policies may misrepresent essential se-
curity requirements. Such mis-specified policies risk either
blocking legitimate workloads or failing to prevent adversarial
behavior. Moreover, while Zero-Trust principles [21] advocate
denying all actions by default, their practical adoption still
depends on detailed knowledge of workload behavior to define
exceptions. This knowledge cannot be assumed to reside solely
with operators, especially in large-scale deployments with
heterogeneous services. Consequently, LLM-based automation
alone is insufficient for safe runtime enforcement without
additional grounding in execution context.

III. KubeScribe DESIGN

Prior log- or LLM-based approaches to policy generation
remain incomplete and do not scale reliably in Kubernetes.
KubeScribe addresses this gap by combining runtime log anal-
ysis with LLM-driven synthesis, enriching abstract intents with
execution context and translating them into engine-specific
policies. This integration reduces manual effort, prevents mis-
specification, and delivers expressive, enforceable policies
across heterogeneous runtime security tools.

A. Overall Architecture
Figure 2 illustrates the five-stage pipeline of KubeScribe:

Log Collection, Intent Parsing, Prompt Building, Policy Gen-

�����������

�����������
���

������ ������
������������������

���
���������

�������������

����

���������

�����������������

����
�
�������

����������

������

��������������

�������
	�

�������
���� ���
���

���
���

� ���
����������
���������	�� ���������������

��������

������

�
	

���
���������

������

������
�����������

Fig. 2: Overall architecture of KubeScribe, showing the
pipeline from log collection and intent parsing to LLM-based
policy generation and validation.

eration, and Validation. Runtime events are continuously col-
lected and stored in a structured database, providing the
foundation for workload-aware enforcement. User prompts are
translated into structured specifications, enriched with execu-
tion context, and reformulated into engine-specific inputs for
LLM synthesis. The resulting policies undergo dual validation,
including CRD schema checks and resource-level verification,
before deployment. Policies that fail validation enter an auto-
matic regeneration loop, ensuring that only syntactically cor-
rect and semantically consistent versions reach production. By
combining log-driven context with LLM synthesis and layered
validation, this architecture enables precise and dependable
policy creation in dynamic Kubernetes environments.

In contrast to prior approaches limited to log-based in-
ference or one-shot LLM translation, KubeScribe integrates
context enrichment with validation throughout the pipeline to
guarantee deployable outputs. This design directly addresses
the twin challenges of policy accuracy and operational safety
in production-scale Kubernetes clusters.

B. Log Collection

The Log Collection stage forms the foundation of Kube-
Scribe by capturing runtime events that are later transformed
into enforceable policies. Unlike prior systems relying on
coarse or single-source logs, KubeScribe gathers heteroge-
neous event streams in real time, including system calls, file
accesses, and network connections from Kubernetes work-
loads. These logs are preprocessed to extract relevant attributes
such as pod metadata, syscall arguments, and resource iden-
tifiers, while noisy or redundant entries are filtered out. Each
entry is annotated with a validity tag that distinguishes be-
tween allowed and disallowed events, ensuring clarity in policy
synthesis. Newly observed behaviors in the operational envi-
ronment can be flagged for administrator approval, balancing
automation with safety. The processed logs are organized into
domain-specific tables for processes, files, and network flows,
which then serve as reliable references for intent enrichment
and validation in later stages, enabling policies that reflect both
workload semantics and operational safety.

1793

���� ������

��������������

�������������
������

���������

��������

��
����
������

�	������
��
�� �	���

�������� �������
����� ���������

�	���

������
������
��
��

�	������

��������
�������
�����

���������
��������

�������
�����
��������������������������
�����������
�����
����������	
������
�������
������������������
�����
�����
��������
��
���
���������
���
����
��������
����	���
��������
������������
�����
���������� ���������
����
�������������������������
�
�����
���������
���
��	��������������
����	���������������������������� �

�	���
���������������������������������

������������������

Fig. 3: Workflow of the User Intent Parser, which converts ab-
stract user prompts into a structured intent schema. Extracted
schema fields guide prompt building and enable querying of
the log database for relevant execution traces.

C. Intent Parsing

The Intent Parsing stage translates high-level user prompts
into structured specifications that drive policy generation. As
shown in Figure 3, the parser converts free-form input into
an Intent Instance aligned with a predefined JSON Schema.
Enforcing the schema not only provides a predictable format
for downstream automation but also prevents incomplete or
ambiguous inputs from propagating errors. Extracted attributes
include the target engine, namespace, labels, network direc-
tion, and intended enforcement action, all mapped to common
domains such as file, process, and network control to remain
engine-agnostic. The parser augments this information with
log queries, grounding abstract intent in observed execution
traces. Leveraging a pre-trained LLM, the parser performs
semantic interpretation of diverse prompt styles and resolves
ambiguities that rule-based methods cannot, ensuring that op-
erator intent is captured consistently and safely for subsequent
policy synthesis.

D. Prompt Building and Policy Generation

KubeScribe constructs LLM-ready prompts by combining
the structured Intent Instance with enriched log data. The
Prompt Builder reformulates extracted attributes into a com-
pact and uniform representation for the fine-tuned LLM. Each
prompt consists of two parts: (i) the target security engine
and its scope (namespace and labels), and (ii) contextual
workload data such as file paths, IP addresses, and ports drawn
from the log database. To remain efficient, workload attributes
are compressed using prefix summarization and clustering,
ensuring that prompts capture essential patterns without ex-
ceeding token limits. Figure 4(a) illustrates an example where
access paths from pods in the kubescribe namespace are
aggregated and compressed before inclusion.

The LLM Engine then generate executable policies for
multiple enforcement backends. Because prompts follow a
standardized schema, the model delivers stable outputs across
heterogeneous engines despite their differing grammars. Com-
pact instruction-tuned LLMs were adapted using the QLoRA

���������������������
��������
���������
�����
������������
����	
�����
���������
�������
��������
����������������

���������������������������������
�������
�������	�������������
����
�	��������	��

������������������������ �����
���

��������������������������
�������������
�����������������
��������

�������������
�����������������������������
�����������������
��

������ ������ �������	

����� �����
���

���

�

�

�

�

������
 �
�
����
����
����

������

­����
��� ���������

�

������
�

������
�

������

����������
����������
����������
����������

����
����

����

�������	 �

�

��������������

����

��������

������������� ����
������

�����������
����������

(a) Intent parsing and prompt construction

���������������������������
�����
��

	
�������
����
����������
����� ����������������
����� ���������������������������
����
����������������
����� ��������������
���������������������
���������������

���������

������
�������������������

���������������
�������
	���������

�����������
��������

����������

���
���������

������
�
���������

��
����
���
���

(b) Policy validation workflow

Fig. 4: Example of policy generation and validation.

method, with training datasets covering host- and network-
level corpora that encode both syntactic rules and semantic
constraints. Generated policies are subjected to validation prior
to deployment, and any failed outputs trigger an automated
regeneration cycle. This loop enables policy synthesis that is
both expressive and robust in production environments.

E. Policy Validation

The Policy Validation stage ensures that generated policies
are both syntactically correct and semantically meaningful. As
shown in Figure 4(b), validation proceeds in two layers. The
first is CRD validation, which enforces compliance with a
predefined JSON Schema and guarantees compatibility with
the Kubernetes API server. The Second is resource validation,
which checks that every file, process, and network resource
referenced in the policy is consistent with the structured
log database introduced in Section III-B. This step prevents
deployment of rules that reference nonexistent or irrelevant
entities, thereby reducing false positives and negatives. When
inconsistencies are detected, the validator provides feedback to
the LLM Engine, initiating an automated regeneration cycle.
Through this closed loop, KubeScribe ensures that only poli-
cies that are executable, consistent, and aligned with observed
workloads are admitted into production environments.

1794

TABLE I: Summary of LLMs used in this study with QLoRA

Model Name #Params #Trainable
DeepSeek-Coder-7B-Instruct-v1.5 [22] 6.92B 15.7M
Meta-Llama3-8B-Instruct [23] 6.75B 16.7M
Mistral-7B-Instruct-v0.2 [24] 7.26B 13.6M

TABLE II: Summary of Dataset used for fine-tuning LLMs.

Scope Engine #Total #Train #Test #Size

Host-Level KubeArmor 2249 2142 107 17.8M
Tetragon 1822 1737 85 16.2M

Network-Level Cilium 1726 1645 81 13.6M
Tetragon 1761 1678 83 15.7M

IV. EVALUATION

A. Evaluation Setup

KubeScribe is implemented in 3.2K lines of Python. The
Log Collector, built on Falco, runs as a DaemonSet to capture
system call level events. The Intent Parser uses GPT-4 to con-
vert natural language into structured intent instances. The LLM
Engine, based on Hugging Face Transformers with QLoRA
fine-tuning, generates policies for KubeArmor, Tetragon, and
Cilium, covering host and network enforcement.

LLM Engine. We employed three 7B instruction-tuned
models (DeepSeek-Coder, CodeLlama3, and Mistral). Table I
summarizes parameter counts with QLoRA, and Table II pro-
vides dataset details. Policies were collected from GitHub and
docs, then augmented with recombined paths and Kubernetes
metadata. Five prompt templates improved robustness.

Experiments. Experiments ran on a server with an NVIDIA
RTX 4090 GPU (24 GB VRAM). The cluster had one master
and two worker nodes (8 vCPUs, 16 GB RAM each), with
the GPU dedicated to one worker. The stack used Kubernetes
v1.29 and containerd v1.7. We benchmarked on Google’s
Online Boutique [25], a demo with 10+ microservices using
HTTP/REST and gRPC. This setup allowed us to assess the
effectiveness of KubeScribe in a microservice environment.

B. Intent-to-Policy Generation with Feedback Validation

Here, we describe the operational workflow of KubeScribe.
Figure 4(a) illustrates how a refined prompt is derived from
an abstract user request. For example, a user may request
a policy that restricts file access to authorized paths for
pods labeled app=nginx in the kubescribe namespace
using the KubeArmor engine. The Intent Parser converts this
request into a structured schema, which the Prompt Builder
uses to extract valid paths from the system log database and
construct a detailed LLM input prompt.

The generated prompt is then processed by the LLM Engine
to generate a security policy. This policy is forwarded to
the Validator, which performs both syntactic and resource-
level checks. Figure 4(b) shows the validation process: the
CRD Validator first detects schema or syntax errors, and the
Resource Validator ensures that the specified paths are valid.
For instance, if a directory path ending with “/” is provided
instead of a file path, the CRD Validator flags a syntax error.
When such an error occurs, the Validator returns feedback

to the LLM Engine, prompting automatic correction. This
example demonstrates the complete workflow, covering intent
parsing, policy generation, and validation, and confirms the
framework’s practical applicability.

C. LLM Engine Quantitative Performance

We evaluated the policy generation models using natural
language generation (NLG) metrics and the practical applica-
bility of generated policies. Five NLG metrics were applied:
BLEU, ROUGE-1, ROUGE-2, ROUGE-L, and METEOR.
BLEU measures syntactic accuracy through n-gram precision,
while ROUGE evaluates reproduction of key policy compo-
nents, with ROUGE-1 assessing token presence, ROUGE-
2 capturing field coherence, and ROUGE-L reflecting se-
quence similarity. METEOR estimates semantic similarity by
considering stemming and lexical variation. These metrics
complement one another by capturing syntax, structure, and
semantics, enabling multidimensional evaluation. To assess
applicability, we also report the compile rate, which measures
whether generated policies can be applied to a cluster, and the
coverage rate, which reflects how many essential paths from
the ground-truth policy are included. Together, these metrics
capture both linguistic quality and deployment feasibility.

Table III shows that fine-tuning substantially improved
performance across all measures. At baseline, 7B-parameter
models performed poorly, with Coverage below 40% and
Compile below 10%, while GPT-4o, pretrained on a larger
corpus, outperformed baseline models even without fine-
tuning. After fine-tuning, all three models improved signifi-
cantly: DeepSeek-Coder-7B achieved a BLEU score of 0.93
and ROUGE-L of 0.96, surpassing GPT-4o and recording a
Compile rate of 75% with Coverage of 93%. CodeLLaMA-
3-7B improved by about 30% across quality metrics, while
Mistral-7B improved by an average of 34%. Initial Compile
rates were near zero due to limited knowledge of policy
schemas, but repeated fine-tuning raised them more than
tenfold. Overall, all three models approached or exceeded
GPT-4o performance after fine-tuning, with DeepSeek-Coder-
7B showing the best results. These findings highlight the
importance of task-specific fine-tuning for improving both
fidelity and deployability of security policies.

V. RELATED WORK

Policy Automation. Automation of container security poli-
cies has focused primarily on Seccomp and network rules.
Seccomp policy generation [9], [10], [26] applies static or
dynamic analysis to reduce the allowed syscall set, but since
Seccomp only determines whether a syscall is invoked, it
cannot capture contextual arguments. Network policy gener-
ation [11], [19] aggregates observed flows to derive compact
rule sets, often coupled with pre-deployment validation, while
recent methods [11] employ LLMs to translate user intent
into network rules. These studies demonstrate the feasibility
of automation, yet their scope is limited: Seccomp remains
coarse, and network-centric automation neglects the host-level
runtime controls that are essential for comprehensive security.

1795

TABLE III: Automatic-metric results for three LLMs on two policy–generation datasets (higher is better).

Stage Model BLEU ROUGE-1 ROUGE-2 ROUGE-L METEOR Compile % Coverage %

Baseline

DeepSeek-Coder-7B-Instruct-v1.5 0.24 0.43 0.29 0.38 0.38 2.1% 35.1%
Code LLaMA-3-7B-Instruct 0.27 0.47 0.29 0.41 0.38 1.4% 17.3%

Mistral-7B-Instruct-v0.2 0.24 0.5 0.27 0.43 0.37 0% 25.4%
OpenAI-gpt-4 0.49 0.74 0.65 0.7 0.6 49.8% 82%

Fine-tuning
DeepSeek-Coder-7B-Instruct-v1.5 0.93 0.96 0.93 0.96 0.96 75% 93%

Code LLaMA-3-7B-Instruct 0.82 0.89 0.86 0.89 0.94 66% 91%
Mistral-7B-Instruct-v0.2 0.72 0.85 0.78 0.81 0.89 70% 91%

This gap motivates KubeScribe, which extends automation
beyond network and syscall whitelisting to fine-grained file,
process, and system-level policies.

Runtime Security Solutions. Several runtime security sys-
tems exemplify different enforcement paradigms. KubeArmor
[5] enforces file and process access control via LSM, Tetragon
[6] leverages eBPF for contextual syscall- and event-level
filtering, and Cilium [7] focuses on eBPF-based network
policy enforcement. Each system addresses only part of the
security spectrum, leaving administrators to manually recon-
cile multiple engines. In contrast, KubeScribe integrates these
heterogeneous backends into a single automation pipeline, en-
abling intent-driven policies that span host-level and network-
level enforcement while ensuring consistency across engines.

VI. CONCLUSION

This paper presented KubeScribe, an integrated framework
for intent-driven automation of runtime and network security
policies in Kubernetes environments. By enriching user intents
with real-time logs and employing QLoRA-based fine-tuning,
the framework generates accurate, engine-specific policies. A
dual validation pipeline combining CRD schema checks with
resource consistency verification ensures that only safe and
deployable policies reach production. Our evaluation demon-
strates significant improvements in policy accuracy, coverage,
and reliability. Future work will extend the framework to addi-
tional security backends and enable dynamic policy adaptation
based on real-time feedback, further advancing automated
protection for cloud-native workloads.

ACKNOWLEDGMENT

This work was supported by the IITP(Institute of Informa-
tion & Communications Technology Planning & Evaluation)-
ICAN(ICT Challenge and Advanced Network of HRD) grant
funded by the Korea government(Ministry of Science and
ICT)(IITP-2025-RS-2023-00259867)

REFERENCES

[1] “Kubernetes,” https://kubernetes.io/.
[2] S. Deng, H. Zhao, B. Huang, C. Zhang, F. Chen, Y. Deng, J. Yin,

S. Dustdar, and A. Y. Zomaya, “Cloud-native computing: A survey from
the perspective of services,” Proceedings of the IEEE, vol. 112, no. 1,
pp. 12–46, 2024.

[3] P. Billawa, A. Bambhore Tukaram, N. E. Dı́az Ferreyra, J.-P. Steghöfer,
R. Scandariato, and G. Simhandl, “Sok: Security of microservice appli-
cations: A practitioners’ perspective on challenges and best practices,” in
Proceedings of the International Conference on Availability, Reliability
and Security, 2022, pp. 1–10.

[4] ARMO, “2025 State of Cloud Runtime Security: It’s Time to Shift to
Cloud-Native Approaches,” 2025.

[5] Accuknox, “KubeArmor: Runtime Security Enforcement System for
Cloud-Native Workloads,” https://kubearmor.io/.

[6] Cilium, “Tetragon: eBPF-based Security Observability,”
https://tetragon.io/.

[7] “Cilium Network Policy,” https://docs.cilium.io/en/latest/security/policy/.
[8] “Network Policies,” https://kubernetes.io/docs/concepts/services-

networking/network-policies/.
[9] S. Ghavamnia, T. Palit, A. Benameur, and M. Polychronakis, “Confine:

Automated system call policy generation for container attack surface re-
duction,” in International Symposium on Research in Attacks, Intrusions
and Defenses (RAID 2020), 2020, pp. 443–458.

[10] M. Pancholi, A. D. Kellas, V. P. Kemerlis, and S. Sethumadhavan,
“Timeloops: Automatic System Call Policy Learning for Containerized
Microservices,” arXiv preprint arXiv:2204.06131, 2022.

[11] H. P. Kim, Bom and S. Lee, “KUBETEUS: An Intelligent Network
Policy Generation Framework for Containers,” in IEEE INFOCOM
2025-IEEE Conference on Computer Communications, 2025.

[12] M. Chen and et al., “Evaluating Large Language Models Trained on
Code,” arXiv preprint arXiv:2107.03374, 2021. [Online]. Available:
https://arxiv.org/abs/2107.03374

[13] S. Geng, H. Cooper, M. Moskal, S. Jenkins, J. Berman, N. Ranchin,
R. West, E. Horvitz, and H. Nori, “Generating structured outputs from
language models: Benchmark and studies,” arXiv e-prints, pp. arXiv–
2501, 2025.

[14] Z. Han, C. Gao, J. Liu, J. Zhang, and S. Q. Zhang, “Parameter-
Efficient Fine-Tuning for Large Models: A Comprehensive Survey,”
arXiv preprint arXiv:2403.14608, 2024.

[15] E. J. Hu, Y. Shen, P. Wallis, Z. Allen-Zhu, Y. Li, S. Wang, L. Wang, and
W. Chen, “LoRA: Low-Rank Adaptation of Large Language Models,”
in Proceedings of the Tenth International Conference on Learning
Representations (ICLR), 2022.

[16] T. Dettmers, A. Pagnoni, A. Holtzman, and L. Zettlemoyer, “QLoRA:
Efficient Finetuning of Quantized LLMs,” in Advances in Neural Infor-
mation Processing Systems (NeurIPS 2023), 2023, pp. 10 088–10 115.

[17] N. Lopes, R. Martins, M. E. Correia, S. Serrano, and F. Nunes, “Con-
tainer hardening through automated seccomp profiling,” in Proceedings
of International Workshop on Container Technologies and Container
Clouds, 2020, pp. 31–36.

[18] H. Zhu, C. Gehrmann, and P. Roth, “Access security policy generation
for containers as a cloud service,” SN Computer Science, vol. 4, no. 6,
p. 748, 2023.

[19] S. Lee and J. Nam, “Kunerva: Automation network policy discovery
framework for containers,” IEEE Access, 2023.

[20] P. Sonune, R. Rai, S. Sural, V. Atluri, and A. Kundu, “LMN: A Tool
for Generating Machine Enforceable Policies from Natural Language
Access Control Rules using LLMs,” arXiv preprint arXiv:2502.12460,
2025.

[21] V. Stafford, “Zero Trust Architecture,” NIST Special Publication 800-
207, 2020.

[22] “DeepSeek-Coder-7B-Instruct-v1.5,” https://huggingface.co/deepseek-
ai/deepseek-coder-7b-instruct-v1.5/.

[23] “Code LLaMA-7B-Instruct,” https://huggingface.co/codellama/CodeLlama-
7b-Instruct-hf/.

[24] “Mistral-7B-Instruct-v0.2,” https://huggingface.co/mistralai/Mistral-7B-
Instruct-v0.2/.

[25] G. C. Platform, “Online Boutique Demo Microservices Application,”
https://github.com/GoogleCloudPlatform/microservices-demo/, 2023.

[26] C. Canella, M. Werner, D. Gruss, and M. Schwarz, “Automating
seccomp filter generation for linux applications,” in Proceedings of the
Cloud Computing Security Workshop, 2021, pp. 139–151.

1796

