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Abstract—In this paper, we find an effective method to
maximize the minimum data rate. The non-orthogonal multiple
access (NOMA), especially, is compared with the time division
multiple access (TDMA) with user equipment (UE) scheduling.
For communication systems with large number of UEs, we assess
the minimum data rate of each multiple access techniques and
also examine the actual time to support the minimum required
data for the entire UEs.

I. INTRODUCTION

The increase of user equipments (UEs) and data traffic is
traditional and consistent direction of communication systems
development with additional conditions, e.g., lower latency [1].
Within limited time, frequency, and space resources, various
methods are exploited to distribute those resources over UEs
orthogonally. For examples, frequency division multiple ac-
cess (FDMA), code division multiple access (CDMA), time
division multiple access (TDMA), and orthogonal frequency
and time division multiple access (OFDMA) techniques are
adopted in previous mobile communication generations [3].

The orthogonal multiple access (OMA) schemes can pro-
vide interference-free communication environment for UEs but
have their limit that comes form the orthogonality at the same
time. With limited number of orthogonal resources, the OMA
schems can support only the same or less number of UEs
simultaneously [2]. Although TDMA or UE scheduling allows
additional UEs to be supported, the scheduling delay follows
inevitably.

The non-orthogonal multiple access (NOMA) is a proper
technique to support a large number of UEs with low delay.
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It has been well known that the NOMA provide meaningful
performance gain for systems where the number of UEs are
larger than that of orthogonal resources or where each UE
requires its minimum data rate [4], [5]. In this paper, we
compare the NOMA with OMA, especially, TDMA with
several scheduling to figure out which scheme is more effective
to maximize the minimum data rate under the same frequency
resources. In addition to the average minimum data rate itself,
the time that consumed to provide a required minimum data
is assessed as a metric of the UE scheduling delay.

II. SYSTEM MODEL

The downlink communication system consists of one base
station (BS) and K UEs where each BS or UE has single
antenna. Then, the received signal at the k-th UE is

K
Yk = hitk + Y his +n,

=1
04k
——

interference

where hj is the channel from the BS to k-th UE that
following Rayleigh distribution CA/(0,7?), and the additive
white Gaussian noise nj has the noise power o7. Without
loss of generality we can suppose that the k-th UE has larger
channel gain than that of (k + 1)-th UE as |hg|?> > |hry1]?.
For the NOMA scheme, then, the interference in (1) is
reduced to ZIZ:_II hixe with the typical superposition coding
and successive interference cancellation (SIC) [5], [6]. The
k-th UE has the signal-to-interference-and-noise-power-ratio
(SINR) as

ke{l,--- K}, (1)
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where Py is the transmit power that is allocated to k-th
UE, and Zszl P, < P for the total transmit power P.
The transmit power for UEs is optimized to maximize the
minimum data rate [5], [6]. The corresponding data rate can
be expressed as

hi|2P,
Ry =logy | il ) (3)
> o=y [ * P + o,
Under the TDMA scheme, meanwhile, the interference in

(1) completely disappears when k-th UE is scheduled, and the
SINR of the k-th UE is computed as

k

|hi|>P

==, k-th UE scheduled,

Ve = , 4)
0, otherwise.

The data rate of the k-th UE, then, depends on the portion of
the scheduled time. If the time 7 is assigned to the k-th UE
during a scheduling period 7', the average data rate of k-th

UE is
Tk |hk|2P
Rk = ? 10g2 ( 0_]% . (5)

For UE scheduling, the round robin and minimum support
strategies are considered since the maximization of minimum
data rate is targeted. To be specific, the round robin method

selects the supporting UE index at the m-th transmission as
idx,;, = mod (m—1,K)+1, (6)

where mod (a,b) is the remainder of division a by b. The
minimum support strategy supports the UE with the lowest

accumulated data as
hi|2P
my, 1ogy (| k|2 ), (7
O

min
ke{l,--- K}

idx,, =

where my, is the number of transmission supporting the k-th
UE until the m-th transmission.

III. SIMULATION RESULTS

The channel variance of UE is set as 77,% =1, and the noise
power is set as o7 = o2. For a given signal-to-noise-ratio
(SNR) p, transmit power is set to be P = ¢2p. The minimum
data rate and the lead time to achieve the required amount of
data are assessed for K UEs. For a given SNR p, the minimum
data requirement is set to be similar level with the system
average data rate as

Drequired = d10g2 (1 + p) ) ®)

where d is a scaling factor, and we set d = 0.1 in this section.

In Fig. 1, the average minimum data rate is measured. The
NOMA scheme shows the highest minimum data rate for both
scenarios of K = 10 and K = 100 UEs. The TDMA with
minimum support provides similar minimum data rate with
that of NOMA, but the difference increases with SNR. The
TDMA with round robin does not complement UEs suffering
weak channels actively, and its minimum data rate falls as the
number of UEs increases.
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Fig. 1: Average minimum data rate over SNR.

It seems that the NOMA and TDMA with minimum support
provide similar level of minimum data rate in Fig. 1. To ob-
serve the difference between the two schemes more clearly, the
actual time length to achieve a required amount of minimum
data is assessed as the number of channel use. In Fig. 2, the
NOMA scheme provides required data for all UEs with lowest
number of channel use. The TDMA with minimum support
let the UEs to achieve the minimum data about 8 more use
of channel than that of NOMA, which is a comparable to the
number of UEs K = 10. As the TDMA allocate its entire
resources for single UE at each channel use, there is always
spare that exceeds the minimum data requirement. Except the
UE with the lowest channel gain, therefore, all UEs make the
BS to use channel with spare at least once. With large number
of UEs K = 100, the increase of the gap between NOMA and
TDMA is noticeable in Fig. 3.
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Fig. 2: Number of channel use with K = 10 UEs.
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Fig. 3: Number of channel use with K = 100 UEs.

IV. CONCLUSION
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The NOMA scheme not just provide a high minimum data
rate but achieves the data requirements of all UEs with shortest
scheduling delay. As the number of UEs increases, the benefit
of NOMA is more remarkable by large performance gain of
both the average minimum data rate and the number of channel
use, i.e., scheduling delay. The NOMA, of course, has its
shortcomings like error propagation in SIC or computation
complexity, but it is obvious that the NOMA can improve
the potential of system performance than OMA in terms of

minimum data rate and delay.
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