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Abstract—This paper introduces the Hydra radio access net-
work (Hydra-RAN), a multi-functional architecture that inte-
grates communications and sensing to enable novel adaptive
user equipment (UE) uplink power optimization in ultra-dense
millimeter-wave (MMW) environments. Unlike conventional up-
link power control schemes which rely on static path loss
models or reactive adjustments, Hydra-RAN leverages real-time
proximity estimation and sensing feedback from distributed
sensing and radio units (SRUs). This allows UEs to dynamically
scale their transmission power according to both distance to the
serving SRU and desired signal-to-interference-plus-noise ratio
(SINR) thresholds. A coordinated power adjustment mechanism,
managed by the Hydra distributed unit (H-DU), mitigates co-
channel interference in overlapping SRU coverage areas through
a global interference model that incorporates spatial separation
metrics and multi-node feedback. Simulation results demonstrate
that the proposed adaptive power control approach achieves
up to 45% energy savings at the UE level, reduces uplink
interference by 38% in ultra-dense deployments, and maintains
QoS requirements even under non-line-of-sight (NLoS) condi-
tions. Furthermore, machine learning algorithms deployed at the
edge enable predictive power adjustments based on UE mobility
patterns and environmental dynamics, laying the foundation for
sustainable and autonomous multi-functional systems.

Index Terms—Hydra-RAN, adaptive power control, multi-
functional networks, integrated sensing and communication
(ISAC), millimeter-wave (MMW), energy efficiency, AI/ML en-
gine, 6G.

I. INTRODUCTION

Uplink power control is a fundamental mechanism for
ensuring reliable connectivity and efficient spectrum utilization
in wireless networks. In conventional LTE and 5G NR systems,
schemes such as open-loop and closed-loop power control rely
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heavily on static path loss models and fractional power com-
pensation factors [2]–[5]. While these approaches are effective
in traditional deployments, they often fail to cope with the
rapidly varying channel conditions and mobility patterns inher-
ent to ultra-dense networks (UDNs). Their inherently reactive
nature also prevents proactive mitigation of uplink interference
across overlapping coverage regions, ultimately resulting in
suboptimal energy utilization and quality-of-service (QoS)
degradation [3], [4].

Recent efforts have sought to address these limitations by
incorporating machine learning (ML) and edge computing
into uplink power optimization strategies [2], [3]. Although
these techniques improve adaptability and scalability, they
typically lack integration with environmental sensing and fail
to fully exploit the benefits of dense multi-node feedback for
predictive power control. Moreover, the absence of coordinated
interference modeling across multiple access points constrains
their applicability in ultra-dense millimeter-wave (mmWave)
deployments, where susceptibility to blockage and rapid signal
fluctuations are dominant challenges.

In our prior work, we investigated the potential of the Hydra
radio access network (Hydra-RAN) to autonomously adapt and
optimize downlink transmit power from sensors and radio units
(SRUs) to user equipment (UE) [7]. The results demonstrated
Hydra-RAN’s superior capabilities in perception-driven power
control, enabled by the joint use of AI/ML engines and sens-
ing mechanisms. Specifically, Hydra-RAN achieved energy
consumption reductions of approximately 55–65% compared
with conventional centralized architectures, 95% detection
accuracy with sub-10 ms latency in mobility-aware scenarios,
and AI/ML inference rates of ≥1000 adjustments per node
per second. Prior deployments have further reported peak
throughput of ≥1 Tbps, average throughput of ≥100 Gbps,
frequency reuse gains of nearly 50%, coverage extension up
to 95%, and interference reduction of about 70%.

Building on these insights, this paper introduces a novel
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Hydra-RAN–enabled uplink power optimization framework
for ultra-dense mmWave networks. Unlike conventional ap-
proaches, Hydra-RAN integrates communications and sensing
in a tightly coupled architecture. SRUs collect real-time en-
vironmental and proximity information, which is processed
by the Hydra distributed unit (H-DU). Leveraging advanced
AI/ML algorithms, the H-DU predicts UE trajectories, antic-
ipates interference patterns, and determines optimal transmis-
sion power levels [7]–[15]. This allows UEs to dynamically
adjust uplink transmit power according to real-time distance
estimates and SINR requirements, thereby minimizing power
usage while preserving QoS and reducing inter-cell interfer-
ence.

The key contributions of this work are summarized as
follows:

• We propose a proximity-aware uplink power control
mechanism that leverages SRU feedback for real-time UE
power adaptation under both LoS and NLoS conditions.

• We develop a global interference coordination model
managed by the H-DU, enabling distributed power scal-
ing across multiple SRUs in overlapping coverage areas.

• We integrate sensor-assisted environmental awareness
into uplink power control logic, facilitating predictive
adjustments in the presence of user mobility, blockages,
and dynamic network topologies.

• We deploy ML models at the network edge for trajectory
prediction and proactive power tuning, reducing signaling
overhead and improving performance for high-mobility
UEs such as vehicles and drones.

• Through extensive system-level simulations, we demon-
strate significant energy and interference savings, achiev-
ing up to 45% reduced UE energy consumption and
38% reduction in uplink interference compared with
conventional power control strategies.

II. SYSTEM MODEL

We consider urban deployment of a Hydra-RAN comprising
a dense array of SRUs and H-DUs, supporting uplink commu-
nications for UE in a MMW cellular network [7]–[13]. The
system integrates sensing and communication functionalities,
enabling adaptive UE uplink power control based on real-
time environmental awareness and multi-node coordination.
Edge processing nodes that coordinate power adjustments
across multiple SRUs. H-DUs aggregate sensor feedback and
employ AI/ML algorithms to predict interference patterns and
determine optimal UE power levels. UEs are equipped with
MMW transceivers that adapt their uplink transmission power
based on real-time feedback from serving SRUs and H-DUs.
The SRUs operate on F distinct frequencies reused across the
network to optimize spectrum utilization. Each SRU serves
multiple UEs, and overlapping coverage areas may lead to co-
channel interference, particularly when adjacent SRUs operate
on the same frequency [8]–[12].

Consider a dense Hydra-RAN deployment with a set of
SRUs S = {S1, S2, . . . , SN} and a set of UEs U =
{U1, U2, . . . , UM}. Each UE is associated with its nearest SRU

based on minimum path loss. The distance between UE u and
SRU s is denoted by du,s.

The received power Pr,u at SRU s from UE u is expressed
as

Pr,u = Pt,u ·Gu,s · L−1
u,s · ηu,s, (1)

where Pt,u is the transmit power of UE u, Gu,s is the
combined antenna gain (UE and SRU beamforming), Lu,s is
the path loss between u and s, and ηu,s models small-scale
fading and shadowing.

The path loss Lu,s for MMW is modeled as

Lu,s =

�
LLoS(du,s), if LoS exists,
LNLoS(du,s), otherwise.

(2)

Here

LLoS(d) = βLoS + 10αLoS log10(d) +XLoS , (3)
LNLoS(d) = βNLoS + 10αNLoS log10(d) +XNLoS , (4)

where β and α are empirical intercept and slope parameters,
and X accounts for shadow fading.

A. SINR Model

The uplink SINR for UE u at SRU s is given by

SINRu,s =
Pr,u�

k ̸=u Pr,k +N0
, (5)

where N0 is the noise power and
�

k ̸=u Pr,k represents the
aggregated interference from co-channel UEs.

B. Adaptive Power Control

To achieve the desired target SINR γ∗
u while minimizing

energy consumption, the UE transmit power is dynamically
adjusted

P ∗
t,u = min


Pmax,max


Pmin,

γ∗
u

��
k ̸=u Pr,k +N0

�

Gu,s · L−1
u,s · ηu,s




 ,

(6)
where Pmax and Pmin are the maximum and minimum
allowed UE power levels.

The desired γ∗
u is determined dynamically by the H-DU

using a global interference model.

C. H-DU Coordinated Interference Management

The H-DU optimizes uplink power allocation across SRUs
to minimize network-wide interference and can be formulated
as

minimize
{Pt,u}

�
u∈U

Pt,u

subject to SINRu,s ≥ γ∗
u, ∀u ∈ U ,

Pmin ≤ Pt,u ≤ Pmax.

(7)
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D. AI/ML-Based Predictive Models

The H-DU uses machine learning models Ftraj and Fintf

to predict

d̂u,s(t+∆t) = Ftraj(du,s(t), vu(t), θu(t)), (8)

Îu,s(t+∆t) = Fintf (Iu,s(t), ρSRU , ρUE), (9)

where vu and θu are the velocity and trajectory angle of UE
u, and ρSRU , ρUE represent SRU/UE densities.

These predictions are incorporated into proactive power
adjustments

PML
t,u = f(d̂u,s, Îu,s, γ

∗
u). (10)

E. Energy Efficiency Metric

The UE energy efficiency (EE) is defined as

EEu =
Ru

P ∗
t,u + Pc

, (11)

where Ru is the achieved data rate of UE u and Pc is the
circuit power consumption.

III. DETAILED SOLUTION OF THE OPTIMIZATION
PROBLEM

This section provides a concrete, reproducible mathemat-
ical procedure to solve the network energy-efficiency (EE)
optimization introduced in Sec. II-F. We give (i) a rigor-
ous fractional-programming reformulation using Dinkelbach’s
method [4], (ii) an inner-loop method to deal with the non-
convex rate/SINR coupling via the well-known WMMSE
(weighted minimum mean-square error) transformation com-
bined with SCA (successive convex approximation) where
needed, (iii) an algorithmic summary with convergence re-
marks, and (iv) notes on distributed implementation and ML
warm-starting for reproducibility.

A. Problem statement (restated)

Recall the network EE maximization problem

maximize
{Pt,u}

EEnet =

∑
u∈U Ru(P)∑

u∈U( Pt,u + Pc)

subject to SINRu,s(P) ≥ γ∗
u, ∀u,

Pmin ≤ Pt,u ≤ Pmax, ∀u,

(12)

where P = [Pt,1, . . . , Pt,M ]T, and each rate is

Ru(P) = B log2
(
1 + SINRu(P)

)
, (13)

with B the bandwidth and SINRu(P) as defined in Sec. II.
The objective is a ratio of a sum of non-concave func-

tions (rates) to an affine function in powers, and the SINR
constraints couple powers nonlinearly. The following standard
two-level approach yields a practical solver.

B. Outer loop: Dinkelbach fractional programming

The fractional objective in (12) is handled via Dinkelbach’s
algorithm [4]. Define

Φ(P) ≜
∑
u

Ru(P), Ψ(P) ≜
∑
u

(Pt,u + Pc). (14)

EE maximization is equivalent to solving the parametric
sequence of problems for a scalar q ≥ 0:

P(q) : max
P∈Pfeas

Θq(P) ≜ Φ(P)− qΨ(P), (15)

where Pfeas denotes the feasible set defined by the SINR and
power bounds. Dinkelbach iterates as

1) Given q(t), solve P(t) = argmaxP∈Pfeas
Θq(t)(P).

2) Update q(t+1) =
Φ(P(t))

Ψ(P(t))
.

3) Stop when Φ(P(t))− q(t)Ψ(P(t)) ≤ ϵouter.
Dinkelbach converges superlinearly to the global optimum
of the fractional problem if each subproblem (15) is solved
optimally; in practice we solve it approximately and decrease
ϵouter to a small tolerance (e.g., 10−4–10−6).

C. Inner loop: solving P(q) with WMMSE + SCA

The objective Θq(P) is non-concave because Ru(P) de-
pends on interference. A widely used and reproducible ap-
proach is to convert the sum-rate term into an equivalent
weighted-MSE minimization (WMMSE) problem [5]. Below
we outline the transformation and resulting iterative algorithm.

1) WMMSE transformation: For each UE u consider a sim-
plifyed single-stream uplink model (receiver scalar equalizer)
with received signal at its serving SRU

yu =
√
gu
√
Pt,usu +

∑
k ̸=u

√
gk,u

√
Pt,ksk + nu,

where gu =Gu,sL
−1
u,sE[ηu,s] is the average effective channel

gain (for notation compactness). Let wu ∈ C be the linear
receive coefficient (scalar) used by the SRU to estimate su.
Then the MSE for UE u is

eu(wu,P) = E
[
|wuyu−su|2

]
= |wu|2Tu(P)−2ℜ{wu

√
gu
√
Pt,u}+1,

(16)
where

Tu(P) ≜
∑
k

gk,uPt,k +N0.

It can be shown that maximizing sum rates is equivalent to
minimizing the following WMMSE cost with appropriately
chosen weights {uu} [5]

min
{wu,uu,Pt,u}

∑
u

(
uueu(wu,P)− log uu

)
. (17)

The equivalence holds in the sense that for any stationary point
of (17) there is a corresponding stationary point of the sum-
rate maximization, and vice versa. Using this transformation
permits block-coordinate updates with closed-form or convex
subproblems.
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2) Embedding the Dinkelbach linear term: Subproblem
P(q) (eq. (15)) becomes

min
{wu,uu,Pt,u}∈P̃

∑
u

(
uueu(wu,P)−log uu

)
+q

∑
u

(Pt,u+Pc),

(18)
where P̃ includes the SINR and power bound constraints re-
expressed in terms of P (we keep SINR constraints explicit,
see below). The additive linear penalty q

∑
u Pt,u preserves

convexity in Pt,u directions in the subproblems.
3) Block-coordinate minimization (BCM): We perform al-

ternating updates over ({wu}, {uu},P):
a) (i) Update receive filters wu (closed form).: Given P,

the optimal MMSE receive coefficient is

w⋆
u =

√
gu
√

Pt,u

Tu(P)
. (19)

b) (ii) Update weights uu (closed form).: Given wu and
P, the optimal weight is

u⋆
u = eu(wu,P)−1. (20)

c) (iii) Update powers {Pt,u} (convex subproblem via
SCA).: With wu and uu fixed, the objective in (18) becomes
a quadratic function of the powers

J(P) =
∑
u

uu

(
|wu|2Tu(P)−2ℜ{wu

√
gu
√

Pt,u}+1
)
+q

∑
u

Pt,u.

The terms Tu(P) are affine in {Pt,k}, hence J(P) is a convex
quadratic function in P except for the concave

√
Pt,u terms

arising from the cross term −2ℜ{wu
√
gu
√

Pt,u}. We address
this using one of two tractable approaches

1) SCA (first-order approximation): linearize the concave√
Pt,u term around the current power iterate P

(n)
t,u using

first-order Taylor approximation

√
Pt,u ≈

√
P

(n)
t,u +

1

2
√
P

(n)
t,u

(
Pt,u − P

(n)
t,u

)
,

which makes J(P) a convex quadratic function in P
at iteration n. The convex quadratic program (QP) is
solved efficiently (e.g., via interior-point or dedicated
QP solvers). SINR constraints are convexified similarly:
since SINRu(P) ≥ γ∗

u can be written as affine inequal-
ity in powers if interference terms are treated explicitly,
we linearize nonconvex denominator terms in the same
first-order manner (or equivalently enforce the equiva-
lent quadratic convex constraints after approximation).
SCA yields guaranteed monotonic improvement of the
objective under mild conditions.

2) GP/Log-change + SCA: apply a log change of variables
pu = logPt,u and approximate interference exponentials
via posynomial/GP approximations; this is standard in
power-control literature but requires careful approxima-
tions for tightness. We recommend SCA for clarity and
reproducibility.

Thus the power update reduces at each inner iteration to
solving a convex QP

min
P

Ĵ (n)(P)

s.t. ŜINR
(n)

u (P) ≥ γ∗
u, ∀u,

Pmin ≤ Pt,u ≤ Pmax, ∀u,

(21)

where Ĵ (n) and ŜINR
(n)

u denote the convexified approxima-
tions at SCA iteration n. Problem (21) is convex and can be
solved reliably.

D. Complete algorithm

The combined algorithm nests the WMMSE/SCA inner loop
inside the Dinkelbach outer loop. Algorithm 1 sketches the
steps.

Algorithm 1 Dinkelbach + WMMSE + SCA for EE maxi-
mization

1: Input: tolerances ϵouter, ϵinner, initial power P(0), initial
q(0) = Φ(P(0))/Ψ(P(0)).

2: for t = 0, 1, 2, . . . (Dinkelbach outer iter.) do
3: Initialize inner iterate P

(0)
in ← P(t).

4: repeat
5: Update wu via (19) for all u.
6: Update uu via (20) for all u.
7: Form convexified QP (21) around P

(n)
in (SCA).

8: Solve QP to get P(n+1)
in .

9: n ← n+ 1.
10: until relative improvement of Θq(t)(P

(n)
in ) < ϵinner

11: Set P(t+1) ← P
(n)
in .

12: Update q(t+1) =
Φ(P(t+1))

Ψ(P(t+1))
.

13: if Φ(P(t+1))− q(t+1)Ψ(P(t+1)) ≤ ϵouter then
14: break
15: end if
16: end for
17: Output: P⋆ ← P(t+1).

E. Distributed implementation (ADMM sketch)

For scalability in ultra-dense deployments, the convexified
QP (21) can be decomposed across SRUs using ADMM.
Introduce local power vectors P(b) at each SRU cluster b
with consensus constraints P(b) = P, form an augmented
Lagrangian, and perform local QP solves plus dual updates.
In each ADMM iteration SRUs solve smaller local QPs using
locally observed interference and exchange only boundary
variables (powers of UEs in overlapping regions). This reduces
per-node complexity and enables parallelization. Convergence
of ADMM holds for convex subproblems (the SCA convexi-
fication is required at each outer inner iteration).
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F. Practical reproducibility checklist

To reproduce results reported in this paper
1) Specify all simulation parameters (bandwidth B, noise

N0, path loss parameters, Pmin, Pmax, targets γ∗
u).

2) Use Algorithm 1 with tolerances ϵouter ∈ [10−4, 10−6]
and ϵinner ∈ [10−3, 10−5]. Typical inner iterations: 5–20;
outer iterations: 5–30.

3) Use SCA linearization as shown and solve the convex
QP with a reliable solver (e.g., CVX/MOSEK, OSQP
for QP).

4) Warm-start with ML predictions for dis-
tance/interference when available; otherwise use
the closed-loop target power as initial P(0).

5) If implementing distributed ADMM, ensure sufficient
dual step-size tuning; use primal/dual residual stopping
criteria.

G. Extensions and alternatives

Alternative inner-loop methods that can be used depending
on tradeoffs

• Global search / monotonic optimization: possible for
very small networks to seek global optimum, but imprac-
tical for realistic sizes.

• Game-theoretic distributed power control: iterative
best-response can be simpler but may not optimize EE
directly.

• Deep learning surrogate solvers: train neural networks
to predict near-optimal P given environment state; useful
for ultra-low latency once trained.

H. Propagation Environment

Due to the high carrier frequency fc in the MMW band,
the propagation channel experiences limited diffraction and
significant sensitivity to obstructions. We model the path loss
PL(d) between a UE and its serving SRU as

PL(d) = PL0 + 10n log10(d/d0) + χσ +Benv, (22)

Where PL0 is the free-space path loss at reference distance
d0, n is the path loss exponent, varying for Line-of-Sight
(LoS) and Non-Line-of-Sight (NLoS) conditions, χσ repre-
sents shadow fading, modeled as a log-normal random variable
with standard deviation σ, and Benv is a blockage factor
determined by SRU environmental sensing, where Benv = 0
under LoS and Benv > 0 under NLoS due to physical
obstructions (e.g., vehicles, buildings). The SRUs employ
sensor observation to classify links as LoS or NLoS in real-
time, enabling proactive adaptation of UE transmission power
[8]–[13].

IV. SIMULATION ANALYSIS AND DISCUSSION

A. Simulation Setup

The simulation scenario models a 1 km2 urban area pop-
ulated with NSRU = 100 SRUs arranged in a grid topology
and with inter-site distances of 100m. Each SRU operates

on one of four distinct frequency bands using frequency
reuse across spatially separated sectors. UEs are uniformly
distributed across the area, with mobility patterns based on a
random waypoint model at speeds ranging from vu = 1km/h
(pedestrian) to vu = 50 km/h (vehicular). The channel model
incorporates LoS/NLoS differentiation, blockage effects de-
rived from SRU environmental sensing (MMW radar and
camera inputs), and dynamic SINR thresholds computed by the
H-DU. Three power control schemes were compared: Hydra-
RAN Adaptive distance and SINR-aware power adjustment
using SRU feedback, 5G NR Closed-Loop conventional frac-
tional path loss compensation (FPC) with fixed target SINR
[1], and Open-Loop (Baseline) static UE transmit power
without adaptation [2].

B. Energy Consumption Analysis

Fig. 1 illustrates the average UE energy consumption as a
function of UE-to-SRU distance under LoS and NLoS con-
ditions. The Hydra-RAN adaptive scheme achieves significant
energy savings, particularly for UEs within d < 100m of their
serving SRUs, where transmit power is reduced by up to 60%
compared to the closed-loop approach.

This reduction is attributed to the fine-grained proximity-
based power scaling enabled by SRU feedback, allowing UEs
to operate at the minimum necessary transmit power while
maintaining target SINR levels.

Fig. 1. Average UE energy consumption versus distance to SRU under LoS
and NLoS conditions.

C. Uplink SINR Performance

Fig. 2 shows the cumulative distribution function (CDF) of
the uplink SINR for all UEs. Hydra-RAN’s adaptive scheme
maintains a tighter SINR distribution around the target γth =
10dB, with 95% of UEs achieving the desired threshold.

In contrast, the open-loop scheme exhibits significant SINR
variability, especially under NLoS and high interference sce-
narios. The closed-loop 5G NR approach performs better
than open-loop but lacks the predictive power adjustment
capabilities of Hydra-RAN.

D. Interference Mitigation

The network-wide uplink interference levels are compared
in Fig. 3. Hydra-RAN reduces average interference power by
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Fig. 2. CDF of uplink SINR for adaptive, closed-loop, and open-loop
schemes.

approximately 8 dB relative to the open-loop scheme. This
improvement is achieved through the H-DU’s coordination of
power adjustments across overlapping SRUs using a global
interference model.

This capability is particularly beneficial in ultra-dense de-
ployments where co-channel interference is a dominant per-
formance bottleneck.

Fig. 3. Average uplink interference power across SRUs.

V. CONCLUSION AND FUTURE WORK

This paper proposes Hydra-RAN, a multi-functional com-
munications and sensing framework designed to enable adap-
tive uplink power control in ultra-dense MMW deployments.
By integrating real-time environmental sensing with dis-
tributed power coordination, Hydra-RAN allows UE to dynam-
ically scale transmission power in response to proximity feed-
back and targeted SINR requirements. Unlike conventional
LTE/5G schemes that rely on static compensation or reac-
tive adjustments, the proposed architecture leverages sensor-
assisted feedback and machine learning-driven predictions
to preemptively mitigate interference and optimize energy
efficiency. Extensive simulations demonstrate that Hydra-RAN
achieves up to 35% reduction in UE energy consumption
and significantly improves SINR compliance. Moreover, co-
operative power management facilitated by the H-DU effec-
tively minimizes co-channel interference in overlapping SRU

coverage regions, enhancing network-wide spectral efficiency
and fairness. These results underscore Hydra-RAN’s potential
as a foundational architecture for multifunctional networks,
offering scalable, energy-efficient, and autonomous radio ac-
cess operations. Future work will extend this framework to
encompass downlink power optimization and joint sensing-
communication resource allocation in high-mobility vehicular
and massive IoT environments.
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