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Abstract—Next-generation wireless networks face critical chal-
lenges in meeting ultra-reliable low-latency communication
(URLLC) requirements while supporting high-mobility users
in ultra-dense environments. These operations are inherently
reactive and triggered only after significant degradation of radio
metrics such as received signal strength (RSRP) or signal-to-
interference-plus-noise ratio (SINR). As a result, HO latencies
often range from 20 to 50 ms, exceeding URLLC submillisec-
ond requirements and leading to increased packet loss, service
disruption, and failed handovers, particularly in high-mobility
environments. This paper introduces Hydra radio access net-
work (Hydra-RAN), a novel collaborative handover management.
Hydra-RAN leverages proactive, sensor-aided handover strate-
gies, collaborative multi-sensor and radio units (SRUs) beam-
forming, and cell-free architectures to achieve seamless mobility.
By predicting UE mobility vectors vy, the system computes a
handover anticipation window T,,; to pre-configure SRUs along
the predicted paths. Collaborative multi-SRU beamforming and
hierarchical task allocation, using lightweight ML models at
the edge and DRL agents at the fog layer, ensure seamless
UE transitions without rigid cell boundaries. Simulation results
demonstrate significant reductions in handover latency (< 1 ms)
and improved service continuity compared to conventional meth-
ods, highlighting Hydra-RAN’s potential to enable scalable and
robust mobility management in 6G networks.

I. INTRODUCTION

The increased demand for ultra-reliable low-latency com-
munication (URLLC) in next-generation wireless networks has
exposed critical limitations to conventional handover (HO)
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mechanisms [1]-[4]. Applications such as autonomous driving,
unmanned aerial vehicles (UAVSs), industrial automation, and
mission-critical healthcare services require seamless mobility
with end-to-end latencies below 1 ms and near-zero packet
loss. However, current 5G New Radio (5G-NR) HO pro-
cedures are ill-suited to such stringent requirements [2]-
[5]. Traditional HO frameworks involve multiple sequential
interactions between user equipment (UE), serving gNodeB
(gNB), and target gNB, including signal measurement and
triggering, resource and load evaluation, measurement re-
porting, HO decision-making, preparation, execution, beam
reconfiguration, and final confirmation [1]-[4]. While essential
for mobility support, this centralized and reactive process
incurs significant latency, often ranging from 20 ms to 50 ms.
Such delays are particularly detrimental in dynamic environ-
ments with high user mobility or dense deployment scenarios,
where frequent HOs are inevitable [3], [4]. Furthermore, the
rigid cell boundary architecture of current systems exacerbates
service interruptions, especially when UEs traverse coverage
boundaries at high speeds [5], [6].

This challenge is further compounded by the conventional
HO mechanisms’ reactive nature. HO triggers are typically
initiated only after radio signal metrics, such as the received
power reference signal (RSRP) or signal-to-interference plus
noise ratio (SINR), fall below predefined thresholds. This
reactive paradigm leads to delayed response, increased HO
failure rates, and degraded quality of service (QoS) in URLLC
scenarios [5], [6]. To address these shortcomings, this paper
introduces the Hydra radio access network (Hydra-RAN):
Multifunctional communications and sensing networks
with collaborative nandover, a novel architecture that allows
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for proactive, low-latency, and robust mobility management
[7]-[15]. Unlike traditional cell-based systems, Hydra-RAN
adopts a cell-free architecture that virtualizes denser deploy-
ments of sensor and radio units (SRUs) into user-centric
clusters. This allows real-time environmental awareness and
continuous monitoring of UE mobility parameters such as
location, velocity, and trajectory vector vy [6]-[10]. By
predicting future UE trajectories, Hydra-RAN computes a
handover anticipation window T},;, during which SRUs can
proactively configure resources to the anticipated target nodes.

A key innovation in Hydra-RAN is the collaborative multi-
SRU beam formation, where neighboring SRUs share channel
state information (CSI) and UE trajectory data through a high-
speed fronthaul mesh [6]-[10]. This enables jointly optimized
multi-beam configurations, forming overlapping coverage re-
gions that allow UEs to remain simultaneously connected to
multiple SRUs during transitions, effectively realizing soft
handovers without rigid cell boundaries [10]-[15].

Moreover, Hydra-RAN integrates a distributed intelligence
framework with hierarchical task allocation. At the edge layer,
Hydra Distributed Units (H-DUs) execute lightweight machine
learning (ML) models for rapid mobility prediction. At the
fog layer, Hydra Centralized Units (H-CUs) aggregate envi-
ronmental data from H-DUs and employ sparse multi-input,
multi-task learning (SMTL)-based deep reinforcement learning
(DRL) agents to select optimal SRU clusters for proactive
configuration [6]-[11]. This design facilitates parallelized HO
preparation and execution across multiple SRUs, utilizing pre-
configured resource blocks and cached context information to
minimize latency.

Simulation results demonstrate that Hydra-RAN achieves
sub-millisecond total handover latency (L ), reduces packet
loss by up to 42%, and enhances service continuity even at UE
velocities exceeding 120 km/h. These findings position Hydra-
RAN as a promising enabler for URLLC in ultra-dense, highly
dynamic environments, such as smart cities and industrial IoT
deployments.

The major novelty contributions to this work are summa-
rized as follows:

o Introduction Introduction of a handover anticipation
mechanism 7, enabling pre-emptive configuration of
SRU resources based on predicted UE trajectories.

o Development Development of a cooperative beam man-
agement approach that uses CSI and the exchange of tra-
jectory data between SRUs for seamless UE transitions.

o Calculation of T,,,; allows preemptive resource alloca-
tion to minimize service disruptions.

o Neighboring SRUs coordinate to maintain seamless UE
connectivity without rigid cell boundaries.

o Design of a distributed intelligence framework that com-
bines edge-level ML prediction and fog-level DRL for
adaptive SRU clustering.

o Parallelized HO processes achieving submillisecond la-
tency and improved robustness in dynamic scenarios.

+ Extensive simulation demonstrating performance gains
over conventional SG-NR HO in terms of latency, packet
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Fig. 1. System Model

loss, and service continuity.

II. SYSTEM MODEL

This section describes the system model of the proposed
Hydra-RAN, which supports proactive, low-latency, and robust
HO management for URLLC scenarios. The system computes
a handover anticipation window 7,;, during which SRUs
proactively reconfigure resources to the anticipated target
nodes. This proactive approach eliminates the reliance on
reactive HO triggers and minimizes service disruptions during
UE transitions.

A. Hydra-RAN Architecture

As illustrated in Fig. 1, the proposed Hydra-RAN archi-
tecture consists of densely deployed SRUs, each equipped
with mmWave transceivers, and sensors. The SRUs are inter-
connected through a high-speed fronthaul mesh network and
are coordinated via a hierarchical control plane [6]-[8]. To
ensure seamless UE connectivity in a cell-free environment,
Hydra-RAN employs a cooperative beam management strategy
that exploits CSI and trajectory data exchanged among SRUs
to enable uninterrupted handovers. In addition, a distributed
intelligence framework integrates edge-level ML prediction
with fog-level DRL to support adaptive SRU clustering. This
holistic design achieves sub-millisecond handover latency and
substantially improves robustness under dynamic network con-
ditions. Architecture also integrates a robust fault-tolerance
mechanism that ensures continuous operation despite potential
SRU failures. By leveraging real-time data sharing and pre-
dictive algorithms, Hydra-RAN minimizes service disruptions
and maintains high network reliability, making it suitable for
mission-critical applications.

o Hydra Distributed Units (H-DUs): Edge-layer enti-
ties responsible for real-time environmental sensing and
lightweight machine learning (ML)-based mobility pre-
diction [6]—[8].

o Hydra Centralized Units (H-CUs): Fog-layer con-
trollers aggregating data from multiple H-DUs and run-
ning SMTL-based DRL agents for SRU clustering and
resource allocation [6]—[8].
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Unlike traditional cell-based systems [1], [2], Hydra-RAN
utilizes a cell-free architecture [2], [3], where UE dynamically
associates with multiple SRUs to maintain seamless connec-
tivity during mobility.

B. Environmental Sensing and Mobility Prediction

Each SRU monitors UE mobility parameters, including
position (xy g, yu E), velocity vy g, and trajectory vector Uy g
[6]-[13]. The UE’s predicted future position is computed as

pue(t+At) =pye(t) +vue - tup - At+n, (1)

where At is the prediction horizon and 7 represents Gaussian
noise modeling random mobility fluctuations.

Hydra-RAN then defines a handover anticipation window
Tont as:

dpredi

predicted

Tont = —— ) (2)
VUE

where dpredicted denotes the distance to the next SRU cluster.

C. Collaborative Multi-SRU Beamforming

Neighboring SRUs collaborate by sharing CSI and trajectory
data through the fronthaul mesh [7]-[11]. This allows the
computation of joint beamforming vectors w; to maximize
SINR for active UEs

W; = arg max Z SINR,, (W), 3)
W ueU
subject to:
Z ||W’L||2 S Ptotal» (4)
ieC

where C is the SRU cluster, I/ is the set of active UEs, and
P,tq; 1s the total transmit power budget.

This approach forms overlapping coverage regions that en-
able soft handovers by allowing UEs to remain simultaneously
connected to multiple SRUs.

D. Distributed Intelligence and Hierarchical Task Allocation
Mobility management is distributed as follows:

o Edge-Level Prediction: H-DUs execute fast, lightweight
ML models to react to local mobility events [6]-[8].

o Fog-Level Optimization: H-CUs aggregate data and
employ DRL agents to determine optimal SRU clusters
for proactive configuration [6]-[8]. The DRL policy 7*
is defined as:

T

> 7' R(si,ar)

t=0

; ®)

7 = argmaxE,
s

where s, is the system state, a; the action, R(s;,a;) the
reward (based on latency and packet loss minimization),
and ~ the discount factor.

¢ Cloud computing (CC): At the cloud layer, large-scale
data analytics, long-term mobility pattern learning, and

global policy optimization are executed. These operations
are less sensitive to latency and leverage the abundant
resources of centralized cloud infrastructures [6]—[8].

E. Latency-Optimized Handover Execution

The total handover latency Lo is reduced through paral-
lelized preparation and execution:

LHO = Lprep + Legee + Lconfa (6)

where Ly,ep, Legec, and Lo, g represent the proactive re-
source preparation, handover execution, and final confirmation
phases, respectively. By overlapping these processes across
SRUs, Hydra-RAN achieves sub-millisecond latency com-
pared to 20-50 ms in 5G-NR.

III. SIMULATION ANALYSIS AND DISCUSSION

In this section, we evaluate the performance of the proposed
Hydra-RAN architecture through detailed system-level simu-
lations. We compare Hydra-RAN against conventional SG-NR
handover (HO) and a reactive HO baseline under varying UE
velocities. The metrics considered include handover latency,
service continuity, and packet loss ratio, which are critical for
URLLC and high-mobility scenarios.

To evaluate the performance of the proposed Hydra-RAN
framework, we developed a comprehensive simulation envi-
ronment capturing the dynamics of highly mobile UE and
dense urban network deployments. The simulation framework
models multi-tier edge/fog/cloud computing, a cell-free ar-
chitecture, and collaborative multi-SRU beamforming. The
system consists of densely distributed SRUs, connected via
high-capacity fronthaul links to hierarchical processing units,
H-DUs and H-CUs. The simulation emulates an urban area
of 1 km? with 200 SRUs randomly deployed at an average
inter-SRU spacing of 50 m. The mobility model employs a
random waypoint pattern with user velocities ranging from
1 km/h to 30 km/h, representing pedestrian to vehicular
speeds. Each SRU operates in the mmWave band at 60 GHz
with a bandwidth of 1 GHz, supporting URLLC services.
The Hydra-RAN leverages predictive UE trajectory estimation
using lightweight machine learning models at the edge layer
(H-DUs) and distributed reinforcement learning agents at the
fog layer (H-CUs) for adaptive SRU clustering and proactive
resource allocation. Key simulation parameters are summa-
rized in Table I

A. Simulation Steps and Tools

To evaluate the proposed Hydra-RAN framework, a com-
prehensive simulation pipeline was developed, combining net-
work simulation, mobility modeling, machine learning inte-
gration, and statistical validation. The software environment
included ns-3 for packet- and protocol-level evaluation,
while simulation of urban mobility (SUMO) was employed to
generate high-fidelity vehicular and pedestrian mobility traces.
Channel modeling was based on 3GPP LoS/NLoS specifica-
tions [1], [2], with dynamic blockage incorporated through
stochastic modeling. For PHY-level evaluation, NVIDIA
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TABLE I

SIMULATION PARAMETERS
Parameter Value
Simulation area 1 km?
SRU density 200 SRUs/km?
Carrier frequency 60 GHz
Bandwidth 1 GHz
UE velocity range 1-30 km/h
Traffic type URLLC
Antenna configuration 64 x 64 MIMO per SRU
Fronthaul capacity 20 Gbps
Handover anticipation window (Tgnt) 50 ms
Simulation duration 600 s
Path loss model 3GPP (LOS/NLOS)
Blockage model Dynamic stochastic blockage
Mobility prediction model Edge-based LSTM predictor
SRU coordination algorithm Distributed DRL with SMTL

Sionna was used to emulate beamforming and propagation
characteristics. ML and DRL modules were implemented in
PyTorch and TensorFlow, with trajectory prediction handled
by Long Short-Term Memory (LSTM) networks and policy
optimization using DRL algorithms. Experiment orchestration
and analysis were conducted in Python, supported by NumPy
and Matplotlib, with Docker ensuring reproducibility and Git
providing version control. Training logs and metrics were visu-
alized using TensorBoard and Weights & Biases. Simulations
were executed on multi-core CPUs with GPU acceleration
(NVIDIA RTX 3080/A100), supported by 64-128 GB of
RAM and high-speed NVMe storage. The simulation pipeline
followed a systematic workflow. First, the topology was gener-
ated by deploying SRUs within a 1 km? urban area on a grid,
while SUMO produces mobility traces with a 10 ms sampling
rate. The PHY and channel parameters were configured with
60 GHz carrier frequency, 1 GHz bandwidth, and 64 x 64
multiple-input multiple-output (MIMO) arrays per SRU. SRUs
were modeled with mmWave CSI, as well as synthetic sensors
abstractions, while a fronthaul mesh with 20 Gbps capacity
and configurable delays emulated inter-SRU connectivity. At
the edge layer, H-DUs executed lightweight inference tasks,
running LSTM-based mobility predictors trained on historical
trajectories. The fog layer hosts DRL agents responsible for
adaptive SRU clustering, offloading, and resource allocation,
while the cloud layer (H-RIC) provides long-term orchestra-
tion and policy refinement. ML and DRL model training were
integrated into the workflow. The LSTM predictor was trained
with a learning rate of le—3, batch size of 128, and 20-50
epochs, using historical trajectory datasets. For DRL, DQN
agents are trained based on the action space. Typical hyper-
parameters include learning rates between le—4 and 3e—4,
batch sizes of 64-256, and discount factor v = 0.99. The
trained models were deployed at runtime within the simulation,
with the LSTM providing a trajectory anticipation window
of Tine = 50 ms and the DRL agent dynamically selecting
SRU clusters, beam configurations, and resource allocations
for soft handovers. Traffic modeling consisted of URLLC

flows with small packets generated every 10 ms, ensuring
stringent latency constraints. Background best-effort traffic
was optionally added to evaluate robustness under congestion.
Throughout each run, the simulator

B. Handover Latency vs. UE Velocity

Fig. 2 illustrates the total handover latency Lpo as a
function of UE velocity ranging from 1 to 30 km/h. Con-
ventional 5G-NR systems exhibit latencies in the range of
20 to 50 ms that increase approximately linearly with UE
speed due to increased signaling overhead and processing
delays under rapid mobility. Reactive HO approaches improve
this by triggering handover earlier, but still suffer from se-
quential signaling delays. In contrast, Hydra-RAN achieved a
significant reduction in data latency to sub-millisecond levels
(< 10 ms), with data latency increasing gradually and slightly
with increasing speed, reaching a maximum of 5 ms across
all tested speeds. This is attributed to the parallel setup and
execution of HO, enabled by proactive resource allocation and
multi-SRU collaborative beamforming. Latency remains nearly
constant with increasing speed, demonstrating robustness in
fast-moving and dynamic environments.

C. Service Continuity vs. UE Velocity

Service continuity is evaluated in terms of the percentage of
time the UE maintains seamless connectivity without service
interruptions during handovers. Fig. 3 compares this metric for
the three schemes. Conventional SG-NR experiences degraded
continuity at higher velocities due to rigid cell boundaries and
reactive HO triggers, causing frequent service interruptions.
Reactive HO improves continuity somewhat through earlier
handover initiation but is still limited by sequential signaling
delays.

Hydra-RAN significantly enhances service continuity by
enabling soft handovers without rigid cell boundaries. The
overlapping coverage of coordinated SRUs and proactive con-
figuration ensures the UE remains connected to multiple SRUs
during transitions, effectively eliminating service gaps even at
velocities exceeding 30 km/h.

D. Packet Loss Ratio vs. UE Velocity

Fig. 4 shows the packet loss rate as a function of user device
(UE) speed. Packet loss increases with speed in traditional
and interactive HO schemes due to handoff delays and signal
degradation at cell edges. Hydra-RAN maintains a consistently
low packet loss rate, reaching a maximum of 1.8%, with
improvements of up to 42% compared to traditional methods.
This improvement is due to proactive UE path prediction and
resource pre-configuration, as well as cooperative beamform-
ing that maintains high signal quality during mobility.

E. Discussion

The simulation results demonstrate that Hydra-RAN effec-
tively overcomes the fundamental limitations of traditional
handover mechanisms. The combination of environmental
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Packet Loss Ratio vs UE Velocity
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awareness through multi-modal sensors, distributed intelli-
gence, and collaborative beamforming achieves ultra-low la-
tency, high service continuity, and low packet loss under
dynamic mobility conditions.

These results validate the system model and confirm the
suitability of Hydra-RAN as a key enabler for URLLC in ultra-
dense and highly dynamic networks, including applications
such as autonomous vehicles, drones, and industrial automa-
tion.

IV. CONCLUSION AND FUTURE WORK

The Hydra-RAN framework is designed as a next-
generation multifunctional platform to address the inher-
ent limitations of conventional rigid network mechanisms
in URLLC scenarios. In mobility-intensive applications that
demand sub-millisecond end-to-end delays, traditional HO
approaches often suffer from excessive latency due to their
sequential, centralized, and predominantly reactive operations.
This latency significantly compromises service continuity,
particularly in environments characterized by high UE mo-
bility and dynamic channel variation. Hydra-RAN overcomes
these challenges by leveraging a dense deployment of SRUs
that integrate mmWave transceivers with multimodal sensing
technologies. These SRUs continuously monitor UE mobility,
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exchange trajectory data, and maintain CSI, enabling precise
prediction of UE movements. By proactively computing a
handover anticipation window, the system orchestrates col-
laborative multi-SRU beamforming and resource preconfigura-
tion, thereby providing seamless, soft handovers without rigid
cell boundaries. To enable low-latency and adaptive control,
Hydra-RAN employs a hierarchical distributed intelligence
framework. Lightweight ML models are executed at the edge
layer to support fast mobility prediction, while DRL agents
operating at the fog layer provide adaptive clustering of
SRUs and optimized decision-making. This synergy between
edge-level inference and fog-level learning ensures efficient
workload distribution and timely execution of HO opera-
tions. Extensive simulation results verify the effectiveness of
Hydra-RAN, demonstrating that the architecture achieves sub-
millisecond HO latency, considerably reduces packet loss, and
sustains robust service continuity at high UE velocities. Com-
pared with conventional 5G-NR and reactive HO mechanisms,
Hydra-RAN offers substantial improvements in reliability and
latency performance, positioning it as a key enabler of URLLC
in emerging applications such as autonomous vehicles, drones,
and the industrial Internet of Things (IoT). Future work
will focus on exploring the integration of Hydra-RAN with
advanced network slicing and multi-access edge computing
(MEC) technologies. This will further enhance its ability
to support URLLC in dynamic and heterogeneous network
environments, paving the way for seamless connectivity in
next-generation multifunctional platform applications.
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