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Abstract—Next-generation communication networks are in-
creasingly challenged by the stringent requirements of ultra-
reliable low-latency communications (URLLC), massive machine-
type communications (mMTC), and real-time multi-modal sens-
ing in ultra-dense urban environments. Traditional centralized
cloud computing architectures often suffer from excessive latency
and bandwidth constraints, making them unsuitable for support-
ing latency-sensitive and computationally intensive applications.
The purpose of this paper is to demonstrate the capabilities of the
Hydra Radio Access Network (Hydra-RAN) framework for dy-
namic, context-aware computational task distribution across hi-
erarchical tiers comprising edge computing (EC), fog computing
(FC), and cloud computing (CC). Hydra-RAN integrates densely
deployed sensor and radio units (SRUs), leveraging a proactive
handover paradigm and multi-SRU collaborative beamforming to
enhance mobility management. A key innovation is the context-
aware task distributor mechanism, which adaptively allocates
workloads based on latency sensitivity, computational intensity,
and data locality. The EC layer Hydra distributed units (H-DUs)
handle initial sensor data preprocessing and lightweight machine
learning (ML) predictions, while the FC layer (Hydra centralized
units, H-CUs) aggregates edge results and employs sequential
multi-task learning (SMTL)-based deep reinforcement learning
(DRL) agents for regional decision-making. The CC layer Hydra
RAN intelligent controllers (H-RICs) orchestrate network-wide
semantic knowledge refinement and long-term model updates.
Extensive simulation results show that Hydra-RAN reduces
average response time by up to 45%, achieves balanced workload
distribution across all tiers, and improves system scalability
under dynamic traffic and mobility conditions. These results
demonstrate Hydra-RAN’s potential as an enabler for future
multifunctional communications and sensing networks, delivering
robust, low-latency, and intelligent distributed operations in
highly dynamic environments.

Index Terms—Hydra-RAN, edge computing, fog computing,
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I. INTRODUCTION

Fig. 1. Hydra Radio Access Network (Hydra-RAN) framework for dynamic,
context-aware computational task distribution across hierarchical tiers com-
prising edge computing (EC), fog computing (FC), and cloud computing (CC).

The rapid proliferation of smart devices, autonomous sys-
tems, and Internet of Things (IoT) applications has signif-
icantly increased the demand for ultra-reliable low-latency
communications (URLLC) and massive machine-type com-
munications (mMTC) in beyond-5G and 6G networks [1]–
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[5]. Conventional cloud-centric architectures, while offering
substantial computational resources, often suffer from high
transmission delays, bandwidth overhead, and backhaul con-
gestion, thereby limiting their suitability for mission-critical
and latency-sensitive services [1], [2]. These limitations have
accelerated the adoption of distributed paradigms such as edge
computing (EC) and fog computing (FC), which enable data
processing closer to end devices to reduce latency and alleviate
core network traffic [1]–[3].

Despite their advantages, EC and FC deployments in iso-
lation face critical challenges, including resource constraints,
scalability limitations, and coordination inefficiencies [1], [3].
Edge nodes, though proximate to users, are typically resource-
limited and prone to bottlenecks under dense workloads [1].
Fog nodes, while offering intermediate computational capac-
ity, often experience congestion and lack a global network
perspective, reducing their effectiveness in large-scale opti-
mization tasks [2]–[4]. These shortcomings highlight the need
for a hierarchical paradigm that synergistically integrates EC,
FC, and cloud computing (CC) into a unified architecture to
achieve scalability, adaptability, and system-wide optimization.

In this paper, we propose a Hydra-RAN-enabled hierar-
chical framework for intelligent and dynamic task distribu-
tion across EC, FC, and CC layers [5]–[7]. The framework
introduces two core innovations. First, Hydra-RAN employs
a context-aware task distributor that leverages heterogeneous
sensing data (e.g., cameras, mmWave radars) and channel
state information (CSI) to enable real-time, adaptive workload
allocation [8]–[13]. Second, the fog layer integrates a sparse
multi-input, multi-task learning (SMTL)-based deep reinforce-
ment learning (DRL) mechanism to optimize task offloading
under dynamic traffic and network conditions [6]–[8]. This
design enables latency-critical tasks to be executed at the edge,
medium-complexity workloads to be processed at fog nodes,
and compute-intensive operations to be efficiently offloaded to
the cloud.

The proposed Hydra-RAN framework advances the state of
the art by: (i) providing a multi-tier, sensor-aware architecture
that unifies EC, FC, and CC in a scalable manner; (ii)
introducing a novel DRL-based fog controller with SMTL for
real-time, context-aware optimization; and (iii) dynamically
adapting to workload fluctuations and heterogeneous service
demands. These capabilities render the system well-suited
for 6G-enabled applications, including autonomous mobility,
wearable robotics, and smart city infrastructures. This holistic
approach ensures improved efficiency, reliability, and adapt-
ability, positioning Hydra-RAN as a robust solution for next-
generation intelligent and real-time applications.

The contributions of this paper are summarized as follows:
• We design a hierarchical Hydra-RAN architecture that

integrates EC, FC, and CC layers for dynamic task
allocation in multi-functional communication and sens-
ing networks. To illustrate, Hydra-RAN offers a unified
framework that synergizes EC, FC, and CC to create co-
hesive intelligence for decision-making. It adopts a three-
tier computing model to enhance real-time intelligence

and reduce computation burn and overhead: (EC at H-
DUs, FC at H-CUs, and CC at H-RICs).

• We develop threshold-based and priority-aware task of-
floading mechanisms to enable intelligent workload dis-
tribution across tiers.

• We implement SMTL-based DRL agents in the fog
layer to optimize real-time task scheduling and resource
allocation.

• We conduct extensive simulations in ultra-dense urban
scenarios, evaluating performance metrics such as re-
sponse time, resource utilization, latency breakdown, and
task offloading ratio.

The remainder of this paper is organized as follows. Section
III introduces the system model and hierarchical task distri-
bution mechanisms. Section III presents the channel model
and DRL-based optimization framework. Section IV discusses
simulation setup, results, and performance analysis. Section V
concludes the paper and outlines future research directions.

II. BACKGROUND

As illustrated in Fig. 1, the top tier of the Hydra-RAN
architecture comprises the central cloud layer, implemented
on Hydra RAN Intelligent Controllers (H-RICs). This layer
provides global coordination, strategic decision-making, and
long-term model updates, while maintaining bidirectional data
exchange with the fog layer to ensure cohesive, network-wide
intelligence and consistent operational policies [8]–[10].

The intermediate fog computing layer, hosted on Hydra
Computing Units (H-CUs), aggregates data from multiple
edge nodes and executes SMTL-based DRL agents. These
agents perform real-time, context-aware optimization for task
scheduling, resource allocation, and priority-aware offloading.
The resulting DRL-driven decisions are disseminated to co-
ordinate operations across both the fog and edge computing
layers [6]–[8].

The bottom tier consists of the edge computing layer,
deployed on Hydra Distributed Units (H-DUs). This layer
is responsible for initial sensor data preprocessing, real-time
classification, and execution of lightweight machine learning
models. It maintains direct wireless connectivity with end-user
devices, enabling ultra-low latency processing.

Hierarchical architecture supports a broad range of mul-
tifunctional applications critical to next-generation networks,
including autonomous vehicles, wearable robotics, smart city
infrastructure, and industrial automation systems. In Fig. 1,
yellow arrows indicate data and control flows between the
central cloud, DRL agents, and fog/edge layers, whereas blue
arrows represent the dissemination of real-time scheduling and
resource allocation decisions. Wireless links depict EC-to-
device communication pathways. Side annotations highlight
the integrated sensor architecture (left) and the spectrum of
supported multifunctional applications (right) [5], [6], [8].

Overall, the Hydra-RAN framework demonstrates a syn-
ergistic integration of centralized cloud intelligence, DRL-
driven optimization, and distributed edge processing, enabling
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efficient, adaptive, and low-latency network operations suitable
for complex, real-time environments [11]–[13].

III. SYSTEM MODEL

Fig. 2. Hydra-RAN system model: SRUs collect multi-modal sensing and
feed H-DUs (edge) for preprocessing; H-CUs (fog) run SMTL-DRL agents
and a context-aware task distributor for offload decisions; H-RICs (cloud)
perform global orchestration and long-term model updates.

The hierarchical system model of the proposed Hydra-
RAN framework is depicted in Fig. 2. Densely deployed
SRUs, equipped with multi-modal sensing and data collec-
tion capabilities, generate a rich stream of environmental
data. The architecture is structured across three integrated
tiers: (i) the edge computing layer, implemented on H-DUs,
is responsible for preprocessing sensor data and executing
lightweight tasks that demand ultra-low latency [5]–[7]; (ii) the
fog computing layer, hosted on H-CUs, aggregates data from
edge nodes, manages real-time decision-making via SMTL-
based deep reinforcement learning (DRL) agents, and handles
intermediate-complexity tasks [5], [6]; and (iii) the cloud
computing layer, comprising H-RICs, performs global opti-
mization, model training, and storage of large-scale datasets
for long-term analytics [11]–[13] This top tier completes
a closed-loop intelligence system by disseminating updated
models and refining offloading policies throughout the network
hierarchy, enabling adaptive workload management.

A. Task Model

Each computational task Ti is defined as a tuple

Ti = {Li, Pi, Di} (1)

where Li represents the workload size (in CPU cycles), Pi is
the priority level (real-time or delay-tolerant), and Di is the
deadline constraint.

The processing time of a task at node k (EC, FC, or CC)
is given by

tkproc =
Li

Ck
(2)

where Ck is the computational capacity of node k (in cycles/s).

B. Network Delay Model

The total end-to-end delay for a task offloaded to layer k
includes processing and communication delays

Dk
total = tkproc + tkcomm (3)

where tkcomm represents the communication latency between
the UE and node k. This can be expressed as

tkcomm =
Si

Bk
+ τk (4)

Here, Si is the size of data to transmit, Bk is the available
bandwidth, and τk is the propagation delay.

C. Task Offloading Decision

To achieve adaptive workload management, we develop
threshold-based and priority-aware task offloading mecha-
nisms that jointly govern decision-making across all tiers.
Threshing ensures that tasks are offloaded only when local
computational or communication resource utilization exceeds
predefined limits, thereby preventing bottlenecks. In parallel,
priority awareness assigns differentiated weights to tasks based
on latency sensitivity and application criticality, ensuring that
delay-sensitive workloads are preferentially offloaded to edge
or fog nodes, while delay-tolerant tasks (e.g., batch analytics)
are deferred to higher tiers. This dual mechanism enables
intelligent, context-aware workload distribution, while bal-
ancing system efficiency with quality-of-service guarantees.
Offloading decisions are determined based on task urgency
and resource availability. Edge-to-Fog offloading is performed
when

Li

CEC
> Tthresh and DEC−FC

net < Dmax (5)

where Tthresh is the time threshold for EC, and DEC−FC
net is

the estimated network delay between EC and FC.
Fog-to-cloud offloading occurs if

Poffload = αUFC + β(1− Preal) > δ (6)

where UFC is the fog node utilization, Preal is the probability
of real-time requirement, α, β are weight factors (α+β = 1),
and δ is the offloading threshold.

D. SMTL-based DRL Optimization

At the fog layer, task scheduling is optimized using an
SMTL-based DRL agent. The objective is to find a policy
π∗ that maximizes the expected cumulative reward

π∗ = argmax
π

E

[
T∑

t=0

γtR(st, at)

]
(7)

where R(st, at) is the reward for taking action at in state st,
and γ ∈ [0, 1] is the discount factor.

The DRL agent input includes multi-sparse features

Xt = {CSIt, Loct, V elt, UEC , UFC , UCC} (8)
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representing Channel State Information (CSI), user location
Loct, velocity V elt, and utilization of EC, FC, and CC layers.

The agent selects the optimal action at, i.e., the target tier
for task execution and resource allocation parameters.

E. System Objective

The overall system objective is to minimize average re-
sponse time Tavg while maximizing resource utilization ef-
ficiency η

minTavg =
1

N

N∑
i=1

D
k(i)
total (9)

max η =

∑
k Uk

|K|
(10)

where k(i) denotes the selected tier for task i, Uk is the
utilization of node k, and |K| is the total number of nodes.

F. Task Distribution Mechanism

1. Edge computing layers (H-DUs) perform the following
tasks

• Real-time sensing and classification of environment (Oc-
cupied / Unoccupied).

• Initial pre-processing of sensor data.
• Execution of lightweight ML models using SVM on small

input windows.
2. Fog computing layers (H-CUs) carry out the following

tasks
• Aggregation of edge results across multiple H-DUs.
• Execution of SMTL-based DRL agents for real-time

decision-making:
• Coordination of multi-agent scheduling and conflict res-

olution between adjacent nodes.
3. Cloud computing layers (H-RICs) carry out the follow-

ing duties
• Long-term learning model updates for DRL agents using

batch training.
• Management of historical data, user behavior, and envi-

ronmental datasets.
Task Offloading Algorithms:
Edge-to-Fog offloading is performed when

Ltask

Cedge
> Tthreshold and Dnet < Dmax (11)

where Ltask is the estimated task load, Cedge is the available
computation at the H-DU, Dnet is the estimated network delay,
and Tthreshold is the task time threshold.

Fog-to-Cloud offloading occurs when fog is congested or
task priority is low

Poffload = α · Ufog + β · (1− Preal time) (12)

where Ufog is fog node utilization, Preal time reflects real-time
priority, and α, β are weight factors (e.g., α = 0.6, β = 0.4).

IV. SIMULATION ENVIRONMENT AND SETTINGS

To evaluate the performance of the proposed Hydra-RAN
framework, extensive simulations were conducted in a realistic
urban ultra-dense network environment. The simulation plat-
form was implemented using OpenAI Gym integrated with a
custom network emulator to capture dynamic user mobility,
heterogeneous task generation, and multi-tier computational
resources. The key components and configurations of the
simulation are summarized as follows.

A. Network Topology

The network comprises 100–500 heterogeneous UEs, in-
cluding autonomous vehicles, IoT sensors, and mobile devices,
randomly distributed over a 1 km×1 km urban area. Each UE
generates computational tasks with varying workload sizes and
latency requirements.

Twenty edge nodes (H-DUs) are deployed to provide ultra-
low-latency processing. Each H-DU is equipped with a compu-
tational capacity of CEC = 10 Gcycles/s and local storage for
temporary caching of sensor data. Five fog controllers (H-FCs)
with intermediate computing power CFC = 50 Gcycles/s ag-
gregate tasks from multiple H-DUs and execute SMTL-based
DRL agents for task scheduling and offloading decisions.
Two cloud servers (H-CCs) with high computing capacity
CCC = 200 Gcycles/s perform global optimization, long-term
analytics, and model updates.

Wireless EC-to-UE links are modeled with mmWave chan-
nel characteristics at 60 GHz with 200 MHz bandwidth, incor-
porating path loss, blockage, and small-scale fading. EC-to-FC
and FC-to-CC backhaul links are high-speed fiber connections
with propagation delays of τEC-FC = 5 ms and τFC-CC = 10 ms,
respectively.

B. Task Generation and Workloads

Each UE generates computational tasks Ti = {Li, Pi, Di}
following a Poisson arrival process with mean rate λ =
5 tasks/s per UE. Task workload sizes Li are uniformly
distributed up to 50 Mcycles. Priority levels Pi are assigned
based on task type: real-time (e.g., perception and control
tasks for autonomous vehicles) or delay-tolerant (e.g., batch
analytics). Task deadlines Di range from 20 ms for low-
priority tasks. Task data sizes Si vary up to 0.5 MB depending
on sensor type and computational complexity.

C. SMTL-based DRL Configuration

The state space is defined as Xt =
{CSIt,Loct,Velt, UEC, UFC, UCC}, capturing channel quality,
UE location and velocity, and computational utilization across
tiers. The action space includes task offloading decisions
(local processing at H-DU, offloading to H-FC, or offloading
to H-CC) and dynamic allocation of computational resources.

The reward function is designed to minimize average re-
sponse time while penalizing resource overutilization and
deadline violations. DRL training parameters include a dis-
count factor γ = 0.95, learning rate η = 0.001, batch size
= 64, and maximum episodes = 2000. DRL agents employ
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Deep Q-Networks (DQN) with SMTL-based multi-task reward
shaping to enable concurrent optimization across multiple H-
DUs.

D. Simulation Scenarios

In varying tasks, the UE task generation rates were scaled
from 50% to 100% of the maximum load to evaluate the
system’s responsiveness and scalability. Dynamic UE mobility
is achieved by having UEs follow a random waypoint mobility
model with speeds ranging from 1 to 30 km/h. This emu-
lates pedestrian and vehicular movement patterns. Network
congestion is a fog, and cloud nodes are artificially loaded
to assess offloading efficiency and hierarchical load balancing
under high-demand conditions.

For comparison, we considered three architectures: (i)
cloud-only centralized processing, (ii) edge-fog hybrid without
coordinated DRL optimization, and (iii) the proposed Hydra-
RAN hierarchical framework with EC-FC-CC offloading and
SMTL-DRL coordination.

E. Resource Utilization Across EC, FC, and CC

Fig. 3 shows resource utilization across Edge, Fog, and
Cloud tiers. In the Cloud-Only system, over 90% of the
workload burdens the Cloud, leading to resource saturation.
The Edge-Fog hybrid improves utilization at the edge and fog
levels but lacks global optimization. Hydra-RAN balances the
computational load effectively: 70% utilization at EC, 75% at
FC, and 60% at CC. This distribution prevents bottlenecks and
allows scalable operation under high workload conditions.

Fig. 3. Resource Utilization Across EC, FC, and CC.

F. Latency Breakdown Across Tiers

Fig. 4 presents the breakdown of total latency into contri-
butions from EC, FC, and CC layers. In Cloud-Only architec-
tures, CC contributes over 90% of latency, highlighting the im-
pact of centralized data processing. Hydra-RAN significantly
reduces CC latency to 40 ms by offloading tasks to EC (30 ms)
and FC (50 ms). This tiered approach ensures that latency-
sensitive tasks are processed locally, while computationally
intensive tasks are escalated only when necessary.

Fig. 4. Latency Breakdown Across Tiers.

G. Task Offloading Ratio Across EC, FC, and CC

Fig. 5 depicts the ratio of tasks processed at each tier. Hydra-
RAN processes 50% of tasks at EC, 35% at FC, and only 15%
at CC. This reflects effective hierarchical offloading, where
low-latency and context-sensitive computations are retained
near the edge. The Edge-Fog hybrid shifts some load away
from the Cloud but still offloads 20% to CC. Cloud-only
systems naturally process nearly all tasks centrally, leading
to poor scalability.

Fig. 5. Task Offloading Ratio Across EC, FC, and CC.

H. Discussion

The simulation results validate the effectiveness of Hydra-
RAN’s hierarchical architecture. By leveraging multi-tier com-
puting resources, Hydra-RAN minimizes average response
times, balances resource utilization, and reduces dependency
on centralized cloud servers. The use of offloading thresholds
(Equations 1 and 2) ensures intelligent workload distribution
based on system state and task requirements. Additionally,
the SMTL-based DRL agents deployed at fog nodes enhance
decision-making efficiency in dynamic environments.

V. CONCLUSION

This paper presented Hydra-RAN, a hierarchical task dis-
tribution framework that integrates Edge Computing (EC),
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Fog Computing (FC), and Cloud Computing (CC) for multi-
functional communications and sensing networks. By leverag-
ing a multi-tier architecture, Hydra-RAN dynamically offloads
computational workloads based on latency sensitivity, resource
availability, and task priority. The proposed system utilizes
a combination of sensor-aware processing and SMTL-based
DRL agents at the fog layer to optimize decision-making in
real time.

Simulation results in ultra-dense urban scenarios demon-
strate that Hydra-RAN achieves significant performance gains
compared to traditional architectures. Specifically, it reduces
average response time by up to 45%, balances resource uti-
lization across tiers, and minimizes reliance on centralized
cloud servers. The latency breakdown and task offloading ratio
further validate Hydra-RAN’s ability to process latency-critical
tasks locally, while offloading compute-intensive operations
hierarchically.

These findings highlight Hydra-RAN’s potential to serve
as a foundational framework for future 6G networks and
beyond, enabling ultra-reliable low-latency communications
(URLLC), massive machine-type communications (mMTC),
and intelligent transportation systems. By efficiently utilizing
the distributed computational resources across edge, fog, and
cloud layers, Hydra-RAN ensures scalability and robustness in
highly dynamic environments. In the future, federated learning
can be incorporated into the edge and fog layer in order
to enable collaborative updates without having to send raw
data to the cloud. As a result of this approach, data privacy
is enhanced and backhaul traffic is reduced, especially in
applications that require privacy protection.
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