
Design and Implementation of a Software Interface
for an AI Modem

Yunjoo Kim, Jungbo Son, Yuro Lee, JungSook Bae
Terrestrial & Non-Terrestrial Integrated Telecommunications Research Laboratory

ETRI (Electronics and Telecommunications Research Institute)
Daejeon, Korea

{yunjoo, jbson, yurolee, jsbae}@etri.re.kr

Abstract—This study focuses on the design and implementation
of two system software interfaces. These interfaces reduce data
processing latency between a field programmable gate array
(FPGA) and a graphics processing unit (GPU) in an artificial
intelligence (AI)-based wireless modem system. Experimental
results indicate that the shared memory-based interface achieved
lower and more stable latency than the transmission control
protocol/internet protocol (TCP/IP)-based interface and is well
suited for real-time systems.

Index Terms—AI modem, system software interface, intelligent
wireless access

I. INTRODUCTION

Modem architectures have evolved into artificial intelligence
(AI) modems that include graphics processing units (GPUs)
and neural processing units (NPUs) [1] [2]. In these environ-
ments, it is important to reduce latency and synchronization
issues in data flows between computing resources and network
interface cards (NICs). To ensure real-time operation, these
systems require low-latency software interfaces [3] [4].

This paper designs software interfaces for real-time opera-
tions and evaluates them in a practical system. Their structures
and performance are described in Sections II through V.

II. AI MODEM SYSTEM OVERVIEW

A. System Architecture and Parameters

The proposed AI modem system consists of a GPU, a cen-
tral processing unit (CPU), and multiple field programmable
gate arrays (FPGAs), as shown in Fig. 1. The GPU, as a com-
puting resource, executes the machine learning-based software
modem and performs demodulation and channel estimation.
Three FPGAs mounted on two boards handle baseband signal
processing and transmission buffering.

TABLE I: System Parameters
Variable Value

System bandwidth (MHz) 400
Subcarrier spacing (kHz) 120

FFT size 4096
Number of subcarriers 3072

Occupied bandwidth (MHz) 368.64
OFDM symbol duration (µs) 8.33

CP length 288
System clock (MHz) 122.88

DAC/ADC sampling frequency (MHz) 3932.16

Fig. 1: AI Modem transceiver platform architecture

This system operates in the 28 GHz millimeter-wave band
and supports up to 400 MHz bandwidth and a downlink
transmission rate of 1 Gbps. The main system parameters are
summarized in Table I.

B. Slot-based Reception Flow

The reception system processes data in slot units. As
shown in Fig. 2, its overall processing flow consists of a
machine learning module implemented with TensorRT and
compute unified device architecture (CUDA), referred to as the
ML+CUDA module, and a hardware modem. In this process,
the software interface exchanges slot data packets between the
ML+CUDA module and the hardware modem through inter-
face memory. Multiple instances of the ML+CUDA module
operate in parallel.

To support slot-based data transfer between an FPGA and
a GPU, the proposed system uses peripheral component in-
terconnect express (PCIe) and data plane development kit
(DPDK).

III. SOFTWARE INTERFACE DESIGN

This chapter describes the software interfaces that are ac-
cessible from both Python and C environments.

Fig. 2: ML-based reception modem block diagram

1455979-8-3315-5678-5/25/$31.00 ©2025 IEEE ICTC 2025

Fig. 3: Shared memory-based software interface

A. TCP/IP based Interface Design

An interface was based on transmission control proto-
col/internet protocol (TCP/IP) sockets with the loopback func-
tion, which is commonly supported in both Python and C envi-
ronments. This design enabled data transfer between the GPU
and the CPU/FPGA components. In the proposed structure,
each ML+CUDA module used an independent TCP/IP socket
and each instance was identified by a unique port.

B. Shared-Memory based Interface Design

A shared memory-based interface in Fig. 3 was designed
to reduce the latency introduced by the previously applied
TCP/IP socket-based interface. Since the shared memory can
be accessed from both Python and C environments, the number
of memory copy operations is reduced. This reduction leads to
lower data transfer latency between the GPU and the FPGA.

IV. EVALUATION AND DISCUSSION

A. Experimental Setup

The experiment used a reception system with an AMD
Threadripper PRO 7965WX CPU, an NVIDIA RTX 6000
Ada GPU, and Xilinx U50 and T1 FPGAs (Fig. 4). The
software ran on Ubuntu 22.04 LTS with CUDA 12.1. ML-
based demodulation was executed on the GPU. Two inter-
faces—TCP/IP sockets and shared memory—were applied for
data transfer between the FPGA and the ML+CUDA module.
The evaluation measured average slot latency as the number
of module instances increased from 4 to 8.

B. Experimental Results and Analysis

Fig. 5 shows the difference in slot processing latency
between the two interface types. In Fig. 5 (a), the processing

Fig. 4: AI-modem reception server

(a) TCP/IP-based interface

(b) Shared memory-based interface

Fig. 5: Slot elapsed latency comparison

latency significantly increased as the number of instances
increased. In contrast, in Fig. 5 (b), the processing latency
remained nearly constant despite the increased number of
instances. This result shows that the simple interface structure
reduces the overhead related to multiple instances.

V. CONCLUSIONS

This paper presented the design of two software interfaces
for real-time communication with an AI modem. One was a
TCP/IP-based design and the other was a shared memory-
based design. Experimental results showed that the shared
memory-based method was more suitable for real-time pro-
cessing because of its lower and more stable latency, and the
proposed interface can be extended to complex operational
environments such as large-scale 5G/6G base stations.

ACKNOWLEDGMENT

This work was supported by Institute of Information & com-
munications Technology Planning & Evaluation (IITP) grant
funded by the Korea government (MSIT) (No. 2021-0-00972,
Development of Intelligent Wireless Access Technologies).

REFERENCES

[1] E. Jeong, et al., “Deep Learning Inference Parallelization on Hetero-
geneous Processors With TensorRT,” IEEE Embedded Systems Letters,
vol. 14, no. 1, pp. 15–18, Mar. 2022.

[2] Y. Zhou and K. Yang, “Exploring TensorRT for Real-Time Deep
Learning,” in Proc. IEEE HPCC, 2022, pp. 2011–2018.

[3] Y. Xiang and H. Kim, “Pipelined CPU/GPU Scheduling for Multi-DNN
Inference,” in Proc. IEEE RTSS, 2019, pp. 392–405.

[4] E. F. Kfoury, et al., “A Comprehensive Survey on SmartNICs,” IEEE
Access, vol. 12, pp. 107297–107336, 2024.

1456

