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Abstract—This paper proposes a modem architecture that
integrates a hardware modem based on a field-programmable
gate array (FPGA) and a software modem that uses a graphics
processing unit (GPU) to support machine learning (ML)-based
channel estimation. In a proof-of-concept (PoC) implementation
for an intelligent wireless access system, the proposed modem
achieved an improvement of approximately 3.5 dB in signal-to-
noise ratio (SNR) under real-time conditions. In addition, parallel
processing reduced latency and ensured stable operation.

Index Terms—ML, parallelization, system interface, FPGA,
modem, deep learning acceleration, intelligent wireless access

I. INTRODUCTION

As artificial intelligence (AI) technologies are introduced to
a wireless access system, intelligent modems that support data
training or decision-making functions become more important.
To implement this modem, high-performance and heteroge-
neous systems include graphics processing unit (GPU)-based
deep learning accelerators and neural processing units (NPUs)
[1] [2]. However, a machine learning (ML) application in the
physical layer remains limited due to strict real-time require-
ments. While the physical layer is commonly implemented
on platforms like field-programmable gate array (FPGA)
and system-on-chip (SoC), FPGA design is unsuitable for
software-oriented AI module development [3] [4]. Therefore,
an architecture suitable for ML algorithms and capable of
efficient development is needed [5].

This paper presents an AI-assisted modem where the chan-
nel estimation function runs on GPU-based software and other

TABLE I: System Parameters
Variable Value

System bandwidth (MHz) 400
Subcarrier spacing (kHz) 120

FFT size 4096
Number of subcarriers 3072

Occupied bandwidth (MHz) 368.64
OFDM symbol duration (µs) 8.33

CP length 288
CP duration (µs) 0.59

Number of OFDM symbols per slot 14
Slot duration (µs) 125

Subframe duration (ms) 1
Midframe duration (ms) 2

Radio frame duration (ms) 10
System clock (MHz) 122.88

Intermediate frequency (MHz) 3300
DAC/ADC sampling frequency (MHz) 3932.16

Fig. 1: Block diagram of ML-based reception modem

physical layer functions run on an FPGA. The architecture
was applied to a proof-of-concept (PoC) system, and its
reception performance was evaluated based on signal-to-noise
ratio (SNR) and real-time performance.

II. INTELLIGENT WIRELESS ACCESS SYSTEM
DESIGN

A. System description

An intelligent wireless access system operates on the 28
GHz millimeter-wave band. The physical layer uses orthogonal
frequency division multiplexing (OFDM) and adopts time
division duplexing (TDD) to separate the uplink and downlink
transmissions. The main parameters are listed in Table I.

A radio frame consists of 10 subframes (1 ms each), each
subdivided into 8 slots with 14 OFDM symbols per slot. Two
subframes make one mid-frame, totaling 16 slots. Within these
16 slots, 12 are for downlink, 3 for uplink, and 1 is a switch
slot. This system supports a downlink speed of up to 1 Gbps.

B. Implementation Details

An AI-assisted modem consists of a hardware (FPGA) mo-
dem for basic wireless signal reception and data delivery, and a
software (GPU) modem that uses an ML module for channel
estimation to improve system performance. Fig.1 illustrates
the reception flow between the hardware and the ML-based
software modem. The set of GPU processes is defined as
ML demodulator, which adopts a Transformer decoder-based
neural network architecture.

During this process, in-phase/quadrature (I/Q) data and
log-likelihood ratio (LLR) data are exchanged in real time
between the two computing resources (FPGA and GPU)
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Fig. 2: AI-assisted modem system PoC testbed

via the software interface. The software interface handles a
parallel instance-based approach to ensure stable real-time
performance, even under slot processing delays.

III. EVALUATION AND DISCUSSION

The HW and ML demodulators were compared and their
performance was measured under identical conditions.

A. Experimental Setup

The AI-assisted modem server is equipped with an NVIDIA
RTX 6000 Ada GPU and Xilinx U50 and T1 boards. The
HW demodulator is implemented on the T1 RFSoC FPGA.
The ML demodulator is implemented on TensorRT and the
compute unified device architecture (CUDA) 12.1 kernel.

The number of slots was set to one when measuring the
performance of received signals. To analyze system latency
and throughput, the number of slots was set to 4, 6, and 7
within a mid-frame. The measurement period was from the
point at which the IQ input arrived at the AI module to the
point at which the LLR output started.

B. Experimental Results and Analysis

Fig. 3 shows the processing time for 4 and 8 instances
under slot condition 4, 6, and 7. More instances improve
parallelism but also increase CPU load. With 4 or 8 instances,
the ML demodulator processed 7 out of 12 slots in real time,
achieving a throughput of 58.3%, which is approximately 3.5
times higher than the 16.7% with a single instance.

Fig. 3: Latency in ML demodulation (instances = 4, 8)

(a) HW-Modem System

(b) AI-assisted Modem System

Fig. 4: Received Constellation and SNR

In the testbed, when the 64-quadrature amplitude modula-
tion (64-QAM) data was transferred, Fig. 4 (a) and (b) show
the constellations of the received signals and the corresponding
SNR values. The ML demodulator achieved an SNR of 25.35
dB, which is an improvement of approximately 3.5 dB over
the HW demodulator’s value of 21.81 dB.

IV. CONCLUSIONS

The proposed AI-assisted modem uses an FPGA for hard-
ware processing and a GPU for ML-based channel estimation.
The experiments showed better signal quality and increased
throughput with parallel instances. These results support the
practical feasibility in real-time wireless systems, and future
work will address scalability and FGPA-GPU latency.
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