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Abstract—In this paper, we present a sensing region selection
framework for vehicular sensor networks (VSNs) for minimizing
age of information (AoI) violations and transmission cost. We
formulate the sensing decision problem as a Markov Decision
Process (MDP), where the system state captures vehicle dis-
tribution, AoI status, and prior transmission success ratios. A
reinforcement learning algorithm, Proximal Policy Optimization
(PPO), is employed to learn an effective sensing decision policy
that balances data freshness and communication efficiency in
dynamic environments.

I. INTRODUCTION

The evolution of 6G communications is expected to support
highly intelligent, context-aware services by enabling large-
scale, real-time environmental understanding [1]. As part of
this vision, vehicular sensor networks (VSNs) are gaining
significant attention. By equipping moving vehicles with on-
board sensors, VSNs enable distributed and infrastructure-free
sensing [2].

Despite these advantages, realizing effective VSNs presents
two major challenges: guaranteeing the freshness of sensed
data and ensuring communication efficiency under limited
wireless resources. In dynamic environments, delayed or
outdated information can lead to inaccurate perception of
the physical world. The age of informations (AoIs) metric
has been widely adopted to capture the timeliness of data
[3]. Furthermore, wireless channels are subject to random
fading, interference, and retransmission, which can degrade
both timeliness and energy efficiency.

To address these issues, this paper proposes a deep learning
based sensing decision framework for wireless VSN, formu-
lated as Markov Decision Process (MDP). The system uses
Proximal Policy Optimization (PPO) to learn optimal sensing
decisions that minimize the AoI violations while reducing the
transmission cost. Finally, the simulation results demonstrates
the performance of the proposed sensing scheme.

II. SYSTEM MODEL

We consider a VSN where the sensing area is partitioned
into NS distinct sensing regions indexed by N = {1, · · · , NS}.
Vehicles are distributed according to a Poisson Point Process
(PPP) and can collect environmental data (e.g., temperature,
humidity) within their respective regions. A single central
server periodically performs sensing region decision at every
sensing period denoted as TS. Specifically, at each sensing

round j, the central server determines the sensing region
selection an(j) ∈ {0, 1} for each sensing region n ∈ N .

Let Vn(j) denote the set of vehicles located in sensing
region n during the j-th sensing round, and Vn (j) = |Vn(j)|
be the corresponding number of vehicles. Among these, v∗n
is defined as the vehicle closest to the geometric center of
sensing region n, and is assumed to play a central role in the
sensing and data reporting process. Then, the uplink Signal-to-
Interference-plus-Noise Ratio (SINR) received by the roadside
unit (RSU) at yn from the vehicle v∗n at x∗

n in sensing region
n is given by

γx∗
n,yn =

Ptxhx∗
n,yn

ℓx∗
n,yn

σ2 + In
, (1)

where Ptx denotes the transmission power of the vehicle,
hxn,yn and ℓxn,yn are the channel fading gain and the pathloss
between the vehicle and the RSU, respectively, σ2 is the
Additive White Gaussian Noise (AWGN) power, and In is the
inter-cell interference from users using same uplink frequency
band with vehicle v∗n. Then the successful uplink transmission
for sensing region n at time t is given by

Un (t) =

{
1, if B log2

(
1 + γx∗

n,yn

)
> δ,

0, otherwise,
(2)

where B is the channel bandwidth and δ is the target data rate.
Here, δ = D

Ttx
where D is the sensed data size and Ttx is the

transmission time.
To ensure reliable transmission, the system permits up to

Nrtx retransmissions per sensing round in the event of a
transmission failure. Under the retransmission scheme, the
success of uplink retransmission for sensing region n at j-
th sensing round can be modeled as

Rn (j) =

{
1, if

∑jTS+NrtxTtx
c=jTS

Un (c) = 1,

0, otherwise.
(3)

Additionaly, the total number of retransmission
attemps required in the j-th sensing round,
denoted as ron (j), can be expressed as ron (j) =
min {k |Un (jTS + (k − 1)Ttx) = 1, ∀k ∈ {1, · · · , Nrtx}}.
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Therefore, the overall success of the data update process is
formulated as

Sn (j) =

�
1, if an(j)Vn (j)Rn (j) > 0,

0, otherwise.
(4)

At time t, the AoI at the RSU for sensing region n is defined
as ∆n (t) = t− tg,n where tg,n denotes the generation time of
the most recently updated data of the sensing region n. Once
a sensing decision is made by the central server, there exists
a fixed decision latency denoted as Td, which contributes to
the increase of the AoI.

When the sensed environmental data follows a stationary
Gaussian process, the correlation coefficient between the cur-
rent value and the outdated sensed data from sensing region
n is given by

ρn (∆n (t)) = exp (βn∆n (t)) , (5)

where βn is the weight of the temporal error for sensing region
n [4]. Then, the estimation error is obtained as

ϵn (∆n (t)) = 1− (ρn (∆n (t)))
2
= 1− exp (−2βn∆n (t)) .

(6)

The estimated data for sensing region n is considered invalid if
the error exceeds a predefined threshold θn, i.e., ϵn (∆n (t)) ≥
θn. Then, we obtain the AoI violation condition as follows.

∆n (t) ≥ Ath,n = − ln (1− θn)

2βn
. (7)

Finally, the error violation in sensing region n at j-th sensing
round, denoted as gn,j , is defined as the duration during which
the AoI exceeds the threshold Ath,n.

III. MDP FORMULATION

The sensing region selection process at each sensing round
is formulated as a MDP to jointly optimize information
freshness and communication efficiency. The system state at
the j-th sensing round is defined as

s (j) = {T (j) ,V (j − 1) ,A∗ (j)} (8)

where T (j) = [T1 (j) , · · · , TNS (j)] denotes the successful
transmission ratio at sensing round j and is computed as

T (j) =




−1, if

�
i∈Jw(j)

an(j) = 0,∑
i∈Jw(j) Un(j)∑
i∈Jw(j) r

o
n(j)

, otherwise.
(9)

where Jw (j) = {i|max (1, j −W ) ≥ i ≥ j − 1} where W
is the window size. In the system state, V (j − 1) =
[V1(j − 1) , · · · , VNS(j − 1)] denotes the number of vehicles in
previous round and A∗ (j) = [A1 (j) , · · · , ANS (j)] denotes
the current AoI violation status where An (j) = Ath,n−∆n (j).

The action at round j, denotes as

a (j) = {a1(j) , · · · , aNS(j)} , (10)

corresponds to the sensing region selection.

Fig. 1. Simulation model.

Fig. 2. Reward versus the AoI weight when ωtx = 2.

The reward function is designed to balance AoI freshness
and transmission cost. Hence, the immediate reward at round
j is defined as

r(j) = ωaoi

NS∑
n=1

TS − gn,j
NS

− ωtx

NS∑
n=1

PtxTtxSn (j) r
o
n (j)

NS
,

(11)

where ωaoi and ωtx are weighting coefficients for AoI violation
and transmission power, respectively.

IV. NUMERICAL RESULTS

For performance evaluation, we consider a simulation en-
vironment as illustrated in Fig.1, consisting of 4 RSUs and 4
sensing regions. Vehicles are spatially distributed according to
a PPP and the interfering user density is set to 10−7 nodes/m2.
We choose D = 2.5KB, Ptx = 20dBm, σ = −100dBm,
B = 5MHz, δ = 2Mbps, Ttx = 10ms, TS = 1ms, Td = 0.1ms,
Nrtx = 3, and θn = 0.03.

Two baseline schemes are used for comparison: (i) random
sensing, where each sensing region is selected with a probabil-
ity of 0.5 at each sensing round; and (ii) always sensing, where
all sensing regions are selected in every round regardless of
context.

Figure 2 shows the variation in the reward as a function
of ωaoi, under a fixed transmission cost weight of ωtx = 2.
The proposed scheme, implemented using the PPO algorithm–
a deep reinforcement learning method–achieves significantly
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higher reward compared to both baseline schemes, demon-
strating its effectiveness in balancing AoI minimization and
transmission efficiency.

V. CONCLUSION

This paper presents a reinforcement learning-based sensing
decision for vehicular sensor networks aimed at minimizing
AoI violations and reducing transmission cost. By modeling
the problem as a MDP and leveraging the PPO algorithm,
the proposed framework adaptively selects sensing regions
based on system dynamics such as vehicle number, AoI status,
and transmission success rates. Finally, through numberical
results, we show that the proposed scheme achieves better
performance compared to the baseline schemes.
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