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Abstract—The rapid rise of harmful drones poses serious
risks to public safety and critical infrastructure, requiring fast
and reliable countermeasures. This paper presents an Edge
AI and Cloud-Integrated Framework that unifies lightweight
detection, secure communication, and automated neutralization.
A YOLOv5 model deployed on Jetson Nano enables low-latency
edge inference, while Adafruit IoT cloud integration supports
real-time monitoring and control. Unlike prior works that focus
only on detection, the proposed system includes a cloud-assisted
neutralization mechanism for end-to-end defense. Experimental
evaluation on a drone payload dataset achieves a mean average
precision (mAP@50) of 0.645, a recall of 0.653, and an accuracy
of 0.733. The framework offers a scalable foundation for future
5G/6G-enabled UAV defense in urban, industrial, and military
environments.

Index Terms—Edge AI, Cloud IoT, Harmful Drone Detection,
Real-Time Monitoring, UAV Neutralization, Communication-
Efficient Framework, Deep Learning (YOLOv5), Secure Drone
Networks

I. INTRODUCTION

Unmanned Aerial Vehicles (UAVs), commonly referred to
as drones, are increasingly employed in logistics, surveillance,
agriculture, and emergency response due to their low cost,
autonomy, and flexibility. However, the same advantages have
enabled their misuse in malicious activities such as smuggling,
espionage, and weaponized attacks, as witnessed in recent
conflicts between Ukraine and Russia where drones were used
to deliver ammunition and damage infrastructure [1]. Differ-
entiating between benign UAVs carrying legitimate payloads
and malicious drones carrying harmful objects is therefore a
critical challenge for ensuring public safety.

Several detection techniques have been explored in prior
research, including radar-based sensing, acoustic signatures,
radio-frequency (RF) analysis, and computer vision ap-
proaches [1]. For example, the YOLO family of deep learning
models has demonstrated strong performance in identifying
drones and their attached payloads from images and videos [2].
Recent studies have also evaluated deep learning models such
as YOLOv5 for harmful payload identification with high accu-
racy and low inference times [3]. Nevertheless, most of these

works focus solely on drone detection and lack mechanisms
for neutralization or secure cloud-based monitoring, limiting
their practicality in real-world defense scenarios.

These limitations motivated this research to design a unified
framework for harmful drone detection and neutralization.
Specifically, we combine edge intelligence, cloud integration,
and IoT-based control into a single scalable system. Unlike
prior approaches that emphasize either detection or monitoring
in isolation, our framework incorporates (i) real-time detec-
tion using YOLOv5 on Jetson Nano for low-latency infer-
ence, (ii) cloud-enabled monitoring and coordination using
Adafruit IoT for secure communication, and (iii) automated
neutralization via defensive drones activated upon confirmed
threats. The main contributions of this paper are as follows:

1) A hybrid edge–cloud framework integrating YOLOv5-
based harmful drone detection, IoT communication, and
neutralization.

2) Deployment of lightweight deep learning models on
Jetson Nano for accurate and energy-efficient real-time
inference.

3) Design of a cloud-assisted neutralization mechanism en-
abling secure activation of defensive UAVs.

4) Experimental validation showing reliable detection accu-
racy (mAP@50 = 0.645, recall = 0.653, accuracy = 0.733)
with reduced communication overhead.

5) A foundation for future 5G/6G-enabled UAV defense
with cooperative swarm intelligence, adversarial robust-
ness, and secure network integration.

By bridging embedded AI, cloud IoT, and real-time neutral-
ization, this work advances UAV defense beyond traditional
detection-only systems and provides a scalable foundation for
protecting critical infrastructures, urban spaces, and military
operations. In this paper, The rest of the paper is organized
as follows: Section II presents the related works; section II
highlight the problem formulation; Section III details the
proposed methodology; Section IV presents results discussion;
and Section V concludes with implications and future direc-
tions.
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TABLE I: Comparative Analysis of Related Works vs. Proposed Framework

Work Approach / Strengths Limitations vs. Proposed Framework
Shakhatreh et al. (2019) Vision-based CNN detection; good accuracy in

static conditions.
High computation cost; no cloud integration or neutraliza-
tion.

Ezuma et al. (2020) RF signal analysis; effective for non-visual detec-
tion.

Requires spectrum hardware; no IoT monitoring or neutral-
ization.

Aker et al. (2017) Faster R-CNN; accurate detection. Too heavy for edge deployment; lacks scalability and de-
fense.

Ashraf et al. (2021) Centralized DL models; high accuracy. Bandwidth-intensive; high latency; no neutralization.
Dorling et al. (2022) Swarm-based monitoring. Multi-UAV support but no automated defense or security.
Proposed Framework YOLOv5 on Jetson Nano + IoT cloud + defensive

UAVs.
Real-time, low-latency detection with cloud-based neutral-
ization and scalable communication.

II. RELATED WORK ON UAV DETECTION AND
COMMUNICATION SECURITY

Recent advances in UAV detection have explored vision-
based deep learning, RF analysis, radar sensing, and swarm
monitoring. Vision-based systems using CNNs and YOLO
variants have shown strong accuracy for detecting drones
and attached payloads [3]–[5]. However, most of these works
focus solely on detection and neglect cloud-based monitoring
or automated neutralization. RF-based systems provide non-
visual detection but require dedicated spectrum hardware and
cannot detect autonomous UAVs reliably [6], [7]. Radar-based
methods offer robustness in low-visibility conditions but are
computationally expensive and lack integrated countermea-
sures [8]. Swarm monitoring frameworks have also been pro-
posed for large-scale UAV tracking, yet they typically exclude
defense mechanisms and secure communication aspects [5].

Several studies between 2022 and 2025 highlight the need
for lightweight, real-time, and communication-efficient solu-
tions. For instance, Sun et al. [4] enhanced YOLOv5 with
spatiotemporal cues for improved detection in surveillance
videos but did not address neutralization. Similarly, recent
reviews emphasize the gap in integrating adversarial robust-
ness, cloud-enabled coordination, and automated defense into
UAV security infrastructures [3]. These gaps motivate our
proposed framework, which unifies harmful drone detection,
cloud monitoring, and IoT-based neutralization into a single
communication-efficient pipeline.

MATHEMATICAL PROBLEM FORMULATION

The completeness of the UAV defense system depends not
only on the inclusion of its core components but also on
their real-time efficiency and scalability. Let the system be
composed of four main modules:

• X1 = Dh (Harmful Drone Detection),
• X2 = N (Neutralization),
• X3 = Cc (Cloud Computing),
• X4 = EAI (Embedded AI).

We define the overall effectiveness of the framework as a
weighted sum of multiple performance objectives as captured
in equation (1):

max R = w1 ·Acc+w2 ·
(
1−

L

Lmax

)
+w3 ·

(
1−

C

Cmax

)
+w4 ·

(
1−

E

Emax

)

(1)

where:
• Acc = detection accuracy (e.g., mAP or F1-score),
• L = end-to-end latency (inference + communication de-

lay),
• C = communication cost (bandwidth consumption),
• E = energy consumption (on edge devices),
• Lmax, Cmax, Emax = acceptable thresholds,
• w1, w2, w3, w4 = weights reflecting system priorities.
This formulation balances detection performance against

real-time and resource constraints, ensuring a scalable
edge–cloud deployment.

The optimization is subject to the following real-time and
operational constraints:

L ≤ Lth, C ≤ Cth, E ≤ Eth (2)

where Lth, Cth, Eth are thresholds defined by mission re-
quirements (e.g., maximum latency for interception, maximum
allowable bandwidth, maximum device power budget).

Unlike prior models that optimize accuracy alone [3], [6],
[7], this formulation explicitly incorporates latency, commu-
nication, and energy efficiency. This ensures that the pro-
posed UAV defense framework remains deployable in real-
time scenarios such as urban security, industrial surveillance,
and military operations where both speed and scalability are
critical.

III. EDGE–CLOUD COMMUNICATION FRAMEWORK FOR
HARMFUL DRONE DEFENSE

Fig. 1 is an overview of the proposed system architecture.
The whole framework is divided into two units: the detection
and the neutralization units. The detection is done by the
cameras and the YOLO version 5 model embedded into
a Jetson Nano. The YOLO V5 unit processes the images
captured by the camera to tell or identify the drone and
the nature of the package carried by the UAV. Neutralization
involves the destruction of the Unmanned Aerial Vehicle by a
stand-by defensive drone that is activated by the true positive
message it receives from the detection unit.
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Fig. 1: Overview of Proposed System Architecture

The proposed anti-drone defense system integrates AI-
powered edge computing, the Internet of Things (IoT), and
cloud-based monitoring to detect and neutralize unauthorized
drones. It consists of a stationary anti-drone camera mounted
on a building, an edge node (Jetson Nano) running YOLOv5
for real-time object detection, and a fleet of defensive drones
for countermeasures. When an incoming drone enters the
surveillance zone, the camera captures sensor data and trans-
mits them to the edge node, which classifies the drone as
a benign payload drone or a harmful threat. If identified as
a threat, a command is sent to activate defensive drones to
intercept or neutralize the target.

The system uses message queue telemetry transport
(MQTT)-based cloud server to relay detection results and
alerts to a user monitoring dashboard. The edge node publishes
classification results to the cloud, enabling real-time tracking
and decision-making. The Adafruit IO cloud dashboard serves
as the primary user interface, allowing remote monitoring
and manual intervention when needed. Defensive drones (D1,
D2, DN) are activated autonomously to engage with harmful
drones, employing signal jamming, tracking, or interception
techniques to neutralize threats before they reach restricted
areas.

By leveraging edge AI for real-time processing, cloud-based
data management, and automated drone defense, this system
ensures efficient aerial threat mitigation. The combination of
YOLOv5-based object detection, IoT-based communication,
and AI-driven automation enables a fast, scalable, and in-
telligent anti-drone security framework, making it suitable
for applications in critical infrastructure protection, military
defense, and public safety surveillance.

Algorithm 1 outlines the drone detection and neutraliza-
tion process, integrating embedded AI and cloud computing
to ensure real-time response to threats. The system cycles
through a set of camera IDs to detect incoming drones

using the DETECT DRONE procedure. Once a drone
is identified, the CHECK PAY LOAD function utilizes a
YOLOv5 model on Jetson Nano to classify the payload as
harmful or benign. If a harmful payload is detected, the system
triggers an alert (SEND ALERT ), activates the neutraliza-
tion mechanism (ACTIV ATE N), and transmits the threat
status to the cloud (SEND TO CLOUD). In the case of
a benign payload, only the status is uploaded to the cloud.
This algorithm ensures autonomous monitoring and decision-
making, blending embedded AI processing with cloud-based
threat communication for rapid drone threat response.

Fig. 2: Electronic implementation of the system

IV. EXPERIMENTAL VALIDATION OF REAL-TIME
DETECTION AND COMMUNICATION EFFICIENCY

A. System Setup

The proposed framework was implemented on an NVIDIA
Jetson Nano as the edge node, equipped with a USB camera
for real-time image acquisition. YOLOv5 was deployed for
harmful drone detection, and an ESP-32 microcontroller pro-
vided communication between the detection unit and the neu-
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Fig. 3: Inference result using test dataset showing object detection of UAV carrying harmful payload

Algorithm 1: Drone Detection and Neutralization
Input: camera ids = {1, 2, 3, 4, 5}, Image detected
Output: Alert if Dh detected, Activate N , Send payload
status to Cc

Definitions:
Dh ← Harmful Drone Detection
N ← Neutralization Mechanism
Cc ← Cloud Computing Implementation
EAI ← Embedded AI Implementation (YOLOv5 on
Jetson Nano)
foreach camera id ∈ camera ids do

DETECT DRONE(camera id)
if Drone is detected then

CHECK PAYLOAD(drone image)
if is harmful payload then

SEND ALERT()
ACTIVATE N()
SEND TO CLOUD(”Harmful Payload”, Cc)

end
else

SEND TO CLOUD(”Benign Payload”, Cc)
end

end
end

Function DETECT DRONE(camera id):
Print ”Scanning for drones using camera”
return True // Assume drone is detected

Function CHECK PAYLOAD(drone image):
Print ”Analyzing payload using EAI”
return True // Assume a harmful payload is detected

Function SEND ALERT():
Print ”ALERT: Dh detected! Notifying authorities...”

Function ACTIVATE N():
Print ”Deploying defensive drone for interception...”

Function SEND TO CLOUD(payload status, Cc):
Print ”Uploading payload status to Cc”

tralization module. A Raspberry Pi 4B controlled the defensive
UAVs activated during threat scenarios. The Adafruit IO cloud
platform served as the monitoring dashboard, enabling remote
supervision and manual intervention when required.

B. Dataset Description & and Training

The Drone Payload dataset from Roboflow contains 511
annotated images for object detection, focused on identifying
drones carrying harmful or general payloads. It includes 447
training, 43 validation, and 21 test images, with bounding

boxes labeled for use in security and surveillance applica-
tions. Experiments were conducted using the Drone Payload
dataset from Roboflow, containing 511 annotated images (447
training, 43 validation, and 21 test samples). Images were
labeled for both benign and harmful payloads. The YOLOv5
model was trained with transfer learning, using 300 epochs
and a batch size of 16, optimized with the Adam optimizer.
Data augmentation techniques (rotation, scaling, flipping) were
applied to improve generalization under diverse conditions.

C. Evaluation Metrics

To assess performance, we employed standard object detec-
tion metrics: mean Average Precision at 50% IoU (mAP@50),
recall, precision, accuracy, and F1-score. In addition, latency
and communication overhead were measured to evaluate real-
time feasibility on embedded hardware.

D. Results and Analysis

Fig. 4 presents the confusion matrix, which shows strong
classification performance for harmful payloads with a true
positive rate of 70%. Some misclassifications were observed
between benign payloads and background, but overall accuracy
remained competitive. Fig. 5 depicts the model training curves,
with steadily decreasing loss and increasing precision and
recall.

The proposed system achieved the following performance:
• mAP@50 = 0.645
• Mean Recall = 0.653
• Accuracy = 0.733
• Mean F1-score = 0.639
Inference results (Fig. 3) indicate that YOLOv5 consis-

tently detected UAVs with harmful payloads across varied
backgrounds with confidence scores above 0.9. The system
maintained low inference latency on Jetson Nano, confirm-
ing the feasibility of real-time deployment. Communication
overhead was significantly reduced by local edge inference, as
only classification results—not raw video—were transmitted to

1199



Fig. 4: The confusion matrix for the YOLOv5 model, showing
classification performance across three categories: Payload,
Harmful Payload, and Background. The diagonal values in-
dicate correct classifications, with 65% accuracy for Payload,
70% for Harmful Payload, and 85% for Background. Misclas-
sification rates are observed, such as 25% of Payloads being
classified as Harmful Payloads and 10% of Background being
misclassified as other categories.

Fig. 5: Graphs showing loss, precision, average precision, and
recall curves. mean average precision of approximately 0.65
at 50% IoU, and a mean recall of approximately 0.65 was
achieved

the cloud. Cloud-based monitoring was successfully validated
using the Adafruit IO dashboard (Fig. 6), which displayed
immediate status updates: green for benign payloads and red
for harmful ones. This ensured real-time situational awareness
for operators and provided a seamless link between embedded
detection and cloud visualization.

TABLE II: Performance Metrics Estimated from the Confusion
Matrix

Metric Value
Mean Average Precision (mAP@50) 0.645

Mean Recall 0.653
Accuracy 0.733

Mean F1-Score 0.639
The values were computed based on the confusion matrix, with mAP@50

indicating the model’s precision at 50% IoU threshold.

Compared to prior works [3], [6], [7], which emphasize
detection without neutralization or cloud integration, the pro-
posed system demonstrates a holistic solution. While the detec-

tion accuracy (mAP@50 = 0.645) is moderate, the integration
of real-time inference, reduced communication cost, and au-
tomated neutralization highlights the framework’s practicality
for urban and industrial deployment. These results confirm
that edge–cloud integration not only enables scalable UAV
monitoring but also ensures fast and coordinated responses
to aerial threats.

The last two Adafruit IO dashboards in Fig. 6 and Fig.
7 demonstrate the real-time functionality of the cloud-based
monitoring system for UAV payload classification. Initially, all
status indicators are inactive (black), awaiting input from the
embedded AI system. Once a drone is detected and classified,
the dashboard updates: a green indicator signals a benign
payload, while red indicates a harmful one. This visual feed-
back provides instant remote awareness and supports real-time
decision-making, effectively linking embedded edge detection
with cloud-based alert visualization.

V. CONCLUSION AND FUTURE WORK
This paper presented an Edge AI and Cloud-Integrated

framework for real-time harmful drone detection and neutral-
ization. By deploying YOLOv5 on Jetson Nano, the system
achieved reliable edge inference with reduced communication
overhead, while Adafruit IoT cloud integration enabled re-
mote monitoring and automated activation of defensive UAVs.
Experimental evaluation demonstrated competitive detection
performance (mAP@50 = 0.645, recall = 0.653, accuracy =
0.733) and confirmed the feasibility of low-latency operation
on embedded hardware. Unlike prior works limited to detec-
tion, the proposed system delivers a holistic solution unifying
detection, cloud monitoring, and neutralization. Future work
will focus on enhancing adversarial robustness against spoof-
ing and camouflage attacks, integrating multi-UAV cooperative
defense strategies, and leveraging 5G/6G ultra-reliable low-
latency communication (URLLC) for large-scale deployments.
These directions will further advance the scalability, security,
and resilience of next-generation anti-drone infrastructures.
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