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Abstract—Industry 5.0 envisions harmonious collaboration
between humans and machines to elevate industrial productivity,
safety, and efficiency. However, achieving real-time monitoring
and analysis of human-machine collaborations poses significant
challenges, particularly in resource-constrained environments.
Key obstacles include ensuring accurate safety monitoring,
maintaining scalability, and generating robust training data for
dynamic, ever-evolving industrial scenarios. To address these
challenges, this paper introduces an innovative Digital Twin-
Driven Semi-Supervised Knowledge Distillation (SSKD) frame-
work. By leveraging a Digital Twin of the physical industrial
environment using Unreal Engine 4, with ROS2-based com-
munication facilitating collaboration between the virtual and
physical systems, the framework creates synthetic data to support
deep learning and semi-supervised pseudo-labeling using teacher
model and a lightweight student model, optimized through
knowledge distillation and quantization, has been deployed on
custom-built edge device, achieving a 6.62% increase in accuracy
while improving inference speed by 46.04%, ensuring efficient
real-time performance. Extensive evaluation across state-of-the-
art architectures highlights the framework’s superior accuracy,
scalability, and operational reliability, offering a transformative
solution for monitoring and enhancing Human-Machine Collab-
oration (HMC) in Industries.

Index Terms—Digital Twin, edge device, human-machine
collaboration, semi-supervised learning, knowledge distillation,
quantization.

I. INTRODUCTION

In the era of Industry 5.0, collaborative machines are
revolutionizing smart manufacturing by enhancing produc-
tivity, and efficiency while reducing the physical burden on
humans [1]. Human-machine collaboration is at the heart
of this transformation, where humans and machines operate
together in shared environments. However, ensuring human
safety remains a significant challenge in such a dynamic
industrial environment [2]. Recent research has shifted toward
more adaptive and flexible safety solutions, such as collision
avoidance systems that enable machines to alter their actions
in real-time to prevent collisions with humans [3]. While
promising, these methods often struggle to reliably distinguish
between human activities, introducing potential risks. More-
over, they rely heavily on aligning digital models of robots
with physical observations, which is often complicated by the
need for precise hand-eye calibration [4].

Digital Twin technology has emerged as a groundbreaking
innovation, providing real-time virtual replicas of physical
systems to simulate, analyze, and optimize industrial processes
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[5], [6]. By enabling precise modeling of Human-Machine
Collaborations (HMCs), Digital Twins eliminate the need for
complex calibration and facilitate adaptable, cage-free safety
strategies. Leveraging semi-supervised learning [7], [8], digital
twins generate synthetic data that cannot be replicated in
the real world, enhance scene understanding, and improve
the decision-making capabilities of deep learning models in
collaborative systems [9]. The integration of knowledge dis-
tillation [10] further strengthens these systems by enabling
the deployment of lightweight models on edge devices. This
approach ensures efficient real-time performance, maintains
high accuracy, and enhances the system’s ability to meet
modern manufacturing environments’ dynamic and evolving
demands. This paper addresses the industrial HMC monitoring
issue utilizing a digital twins-based SSKD framework. The
main contributions of this work are as follows:

« We proposed a novel Digital Twin-Driven SSKD frame-
work tailored for monitoring HMC in Industry 5.0 specif-
ically designed for deployment on resource-constrained
edge devices, ensuring efficiency and scalability in real-
world industrial settings.

o Developed a Digital Twin of an industrial HMC environ-
ment using Unreal Engine 4 to generate synthetic data to
train deep learning models and facilitate semi-supervised
pseudo-label generation using a teacher model. This
approach enhances the monitoring and analysis of HMC.

o A lightweight student model has been developed by
integrating knowledge distillation and quantization tech-
niques. This model has been successfully deployed on
a custom-built edge device, enabling real-time inference
and rigorous model evaluation to ensure operational fea-
sibility.

e The proposed framework is thoroughly tested and eval-
uated using multiple state-of-the-art model architectures.
Comparative analysis with existing methodologies further
demonstrated the superior performance and capability of
the framework across various configurations.

The remaining part of this paper is organized as follows:
Section II presents an overview of the related works on Digital
Twin for HRC and SSKD for object detection. Section III
describes the SSKD framework in detail. Section I'V describes
the experimental evaluation and performance analysis. Section
V summarizes the results and discusses future work.
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Fig. 1: The Overall Process of the Proposed Digital Twin-Driven SSKD Framework.

II. RELATED WORK
A. Digital Twin for HMC

Digital Twin enhances HMC by enabling real-time modeling
and simulation of interactions in industrial settings. Digital
Twins enhance decision-making, safety, and adaptability in
dynamic environments by integrating synthetic data with real-
world observations. Recent advancements in Al and sens-
ing technologies have made Digital Twins an essential tool
for optimizing HMC [11], ensuring efficiency and safety in
Industry 5.0 applications. Malik and Brem [2] propose a
framework for industrial assembly systems that uses labeled
and unlabeled data to enhance safety in HRC environments
by focusing on adaptability in dynamic human-machine in-
teractions. Droder et al. [4] utilize a Digital Twin integrated
with machine learning to validate deep learning models for
path planning, addressing safety in collaborative scenarios.
Additionally, Ghasemi et al. [12] incorporate deep learning
into Augmented Reality to map virtual and physical objects
during collaborations, while Park et al. [13] develop a hands-
free collaboration system using a Digital Twin in mixed-reality
environments.

Unlike previous studies, our Digital Twin generates syn-
thetic datasets for training deep learning models and enables
testing in robust scenarios, significantly reducing time and
labor costs while improving training efficiency.

B. SSKD for Object Detection

Region-based convolutional neural networks, such as R-
CNN, Fast R-CNN, and Faster R-CNN, are widely used two-
stage object detection methods that rely on fully supervised
learning, requiring large amounts of labeled data for training
[14]. In contrast, semi-supervised approaches combine labeled
and unlabeled data to reduce this dependency. Pseudo-labeling
methods, like the teacher-student model, train a teacher model
to generate pseudo-labels [15], which are then used with

unlabeled data to train the student model [16]. Techniques like
FixMatch [17] use weak augmentations for pseudo-label cre-
ation and validate them with strong augmentations, ensuring
consistency and efficiency. Similarly, soft teacher models [18],
updated through exponential moving averages, refine pseudo-
labeling and improve learning outcomes.

The previous approaches often rely on extensive data pre-
processing and assume labeled and unlabeled data come from
the same domain, leading to reduced accuracy in unseen envi-
ronments. Our approach addresses these limitations by com-
bining data from both physical and simulated environments for
efficient teacher model training and pseudo-label generation.
Through knowledge distillation and quantization, we develop a
lightweight student model for edge deployment, ensuring real-
time performance and adaptability while reducing dependency
on labeled data.

III. PROPOSED FRAMEWORK OVERVIEW

Fig. 1 illustrates the semi-supervised knowledge distillation
digital twin framework, which brings together a Digital Twin
layer and a Physical layer to facilitate robust human-machine
collaboration detection. By combining synthetic data generated
in a virtual environment with real-world data gathered from
actual industrial operations.

A. Digital Twin Layer

The Digital Twin layer accurately simulates robotic oper-
ations and human involvement in a virtual environment. A
teacher-student model pair is initially trained within this layer
by leveraging synthetic datasets, which can be further aug-
mented with any available labeled real-world samples. Such
simulations allow for cost-effective, rapid data generation,
including edge-case scenarios or new industrial layouts that
may not be readily available in real life. Consequently, the
need for extensive manual labeling is greatly diminished, and
iterative experimentation becomes more feasible.
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Fig. 2: Demonstration of HMC Environment & Dataset: (a) Cobot and Human Collaboration (b) Our Digital Twin Simulation

of the Real-world Industrial Setting.

Within this layer, robotics processes and human-machine
collaborations are closely replicated, enabling the teacher
model to learn high-level patterns from a broad spectrum of
simulated tasks. This teacher model then transfers its learned
knowledge to a student model, accelerating the learning pro-
cess while maintaining performance. ROS2 communication
ensures smooth bidirectional data flows between the Digital
Twin and the Physical layer, as virtual environments can
request ground-truth updates or partially labeled samples from
the real world for enhanced training fidelity.

B. Physical Layer

Operating in parallel, the Physical layer features real-world
autonomous robots, edge devices, and on-site monitoring
systems that capture live sensor data (e.g., video streams).
A lightweight student model, informed by the teacher-student
training loop in the Digital Twin, is deployed on these devices
to detect and respond to human-machine collaborations in real
time. This setup allows the model to accommodate practical
challenges, including variations in lighting, object occlusions,
and other unstructured conditions that are difficult to replicate
even in advanced simulations.

As the Physical layer continuously streams new data, it
can relay partially labeled or unlabeled observations back to
the Digital Twin via ROS2, where the teacher-student model
benefits from real-world updates. In turn, simulated outputs
and refined model parameters from the Digital Twin are peri-
odically pushed back to edge devices, ensuring that the student
model stays current with evolving industrial workflows. This
cyclical exchange of data and model updates bolsters safety,
reduces labeling overhead through semi-supervised learning,
and fine-tunes system performance under resource constraints.
By iterating this loop where synthetic data augments real-
world data and real-world feedback guides simulation im-
provements the framework evolves to address both expected
and unforeseen collaboration scenarios, ultimately enhancing
the efficiency and reliability of human-machine collaborations.

C. Digital Twin Simulation & Dataset

Unreal Engine 4 (UE4) provides a highly versatile platform
for creating immersive, photorealistic virtual environments.
We leverage UE4 to simulate real-world industrial settings

with minimal reality gaps, generating synthetic data that
includes precise annotation information. This data is central
to training the SSKD model and validating its performance in
identifying human and machine work areas, ensuring adher-
ence to safety standards.

Fig. 2 contrasts the real-world and simulated HMCs. The
physical environment including workspace geometry, robot
kinematics, and visual data were first captured and synthe-
sized into a 3D model. This model was then imported into
UE4, where the cobot and essential workspace elements were
positioned to mirror the actual layout. ROS2 handled real-time
synchronization, continuously transmitting joint angles, end-
effector coordinates, and camera feeds from the physical robot
to its virtual counterpart. A virtual human operator was also
introduced to replicate the human participant’s actions. We
have leveraged this setup to develop a dataset that accurately
captures real-world scenarios.

D. Semi-Supervised Knowledge Distillation

Fig. 3 illustrates the proposed semi-supervised knowledge
distillation method, which combines synthetic data produced
by a Digital Twin with real-world observations. The pipeline
begins by training a teacher model T on real-world and
synthetic data (rs), D,s, thereby leveraging automatically
generated annotations that capture diverse robotic scenarios.
Formally, the teacher training can be expressed as

T = train(D,s), )

and once trained, T predicts pseudo-labels on unlabeled syn-
thetic samples

y - T(.’,E), T € {Déim U DU}’ (3)
where D, is unlabeled simulated data and D, is real-world
unlabeled data. Pseudo-labels below a chosen confidence
threshold can be discarded to maintain label quality. A student
model S, designed for efficient edge deployment, is then
initialized and trained on a mix of labeled and pseudo-labeled
data:

S = train(z, ) 4)
This training incorporates response-based knowledge distil-
lation, wherein the teacher’s output probabilities (“soft labels”)
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TABLE I: Experimental Results of the Proposed SSKD Model with Quantization

Model mAP | Accuracy | Precision | Recall | Fl-score IoU Parameters | FLOPs | Inference Time
(%) (%) (%) (%) (%) (%) (m) (m) (ms)
Baseline (YOLOVS5s) 79.45 88.35 84.78 76.88 80.51 77.20 7.2 16.5 129.34
Baseline + SS (Pseudo label) 85.98 90.48 85.29 78.97 81.91 78.89 7.2 16.5 130.74
Baseline + KD (from YOLOV5I) 89.76 91.10 87.38 81.75 84.30 80.88 7.2 16.5 121.54
Baseline + SSKD 91.98 95.39 88.87 84.46 85.97 87.45 7.2 16.5 125.12
Baseline + SSKD & Quantization | 91.11 94.20 86.98 85.40 83.10 84.12 4.8 10.3 67.51

*8S: Semi-Supervised Learning, *KD: Knowledge Distillation, *SSKD: Semi-Supervised knowledge Distillation

provide a more informative training signal than ground-truth
labels alone. In this approach, soft labels are computed by
applying a temperature-scaled softmax to the teacher’s logits.
Here, the normalized probability ¢ is

exp(z;/T)
Zj exp(zj/T)

where z; denotes the teacher’s raw logits, and 7" is the
distillation temperature. A larger 7" yields a softer distribution,
thereby facilitating the student’s understanding of inter-class
relationships. During distillation, the total loss combines soft-
label loss and hard-label loss:

6 = (10)

LResponse =« Lsoft + ﬁ Lhard (1 l)

Here, Lgs 1is a measure of how well the stu-

dent’s temperature-scaled predictions match the teacher’s

temperature-scaled predictions; Ly, q enforces consistency

with ground-truth (hard) labels. Specifically, the soft-label loss

takes the form of a cross-entropy between teacher and student
outputs at temperature 7":

N
Lsoft = - Zp? log(q;r)
j=1
where pJT is the teacher’s probability j at temperature 7', and
q;fF is the student’s corresponding probability under the same
scaling. The hard-label loss compares the student’s predictions
to ground-truth labels ¢; € {0,1}:

12)

N
Lyara = — ch log(q;)
j=1

hence q]l represents the student’s predicted probability at

temperature 1. For classification tasks, c¢; is 1 if the instance

belongs to the target class and 0 otherwise. For the HMC

detection, the model predicts bounding boxes b; for each

instance ¢. for that an additional bounding-box regression loss

Lppox, is implemented via Smooth L; or ¢ distance between
the predicted b; and ground-truth b;:

(13)

N
Lbbox = Z SIIIOOJEhL1 (ZA)Z, bl)
i=1
where each b, = (xi,yi,wi,hi) is the ground-truth box,
and b; is the student’s predicted box ¢. The distillation
loss accounts for both classification (soft + hard labels) and
bounding-box regression:

(14)

Estudent = aLsoft + BLhard + 'VLbbox (]5)
Here, «, [, and v serve as weighting factors that balance
distillation signals (soft labels), supervised classification (hard
labels), and bounding-box regression. By tuning these coeffi-
cients, one can prioritize the different learning signals accord-
ing to application demands. When v = 0, the student focuses
solely on classification tasks; when y is larger, bounding-box
accuracy takes precedence.
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Fig. 4: Custom Build Lightweight Edge Device for Edge
Deployment and HMC Monitoring.

TABLE II: Performance Comparison of the Proposed Method
with Existing Approaches

Teacher ViT-Base(85.55M) WRN40-4(8.97M) ResNet50(23.73M)
Student ViT-Tiny(4.24M) MobileNetV2(1.24M) ResNet18(0.5M)
Accurac mAP | Accurac mAP Accurac mAP

Method @ | o || @ | @
Chen et al. [19] 90.15 88.21 85.38 84.75 83.95 81.91
Cao et al. [10] 87.13 82.37 82.47 81.10 81.26 80.54
Cui et al. [20] 88.98 87.10 86.29 84.98 85.19 83.95
Zhao et al. [7] 91.19 88.21 88.13 85.22 86.19 83.91
SSKD 91.58 88.23 87.94 85.67 85.87 84.10

Our SSKD method allows the student model to benefit from
teacher-provided soft labels capturing nuanced class relation-
ships while still adhering to essential supervised signals in
classification and localization. As a result, the student model
can effectively handle sophisticated vision tasks in HMC
scenarios, even under the resource constraints typical of edge
devices. The Digital Twin supplies labeled synthetic data and
generates unlabeled simulated samples that the teacher model
can pseudo-label, thus augmenting the student’s training set
without intensive human annotation. As the final step, the
student model S is validated on a small portion of fully labeled
real-world data to ensure robust generalization.

E. Quantization of the Student Model

post-training integer quantization is being applied to the
final student model S. Specifically, all floating-point weights
and activations are converted into 8-bit integers, reducing
memory usage by &~ 30% without significantly impacting
accuracy. During inference, integer-arithmetic kernels replace
their floating-point counterparts, allowing the compressed stu-
dent model S to run efficiently on our resource-constrained
embedded controllers. Our testing showed that this quantized
model maintains real-time performance for HMC, even under
limited compute and memory budgets.

IV. EXPERIMENTAL EVALUATION

A. Experimental Environment

The study used a server with an Intel Core 19-10980XE
(3 GHz), three NVIDIA GeForce RTX 3090 GPUs, 130 GB

RAM, and Ubuntu 22.04.4 LTS. The deep learning setup
used NVIDIA driver 535.161.08 with CUDA 12.2 and Python
(2.16.1 and 3.12.2) for TensorFlow for Digital Twin simulation
and model training. And a custom AArch64 edge device
(shown in Fig. 4) with a 6-core CPU (500 MHz base, 2208
MHz boost) for student model deployment and testing.

B. Evaluation of the proposed framework

A comprehensive evaluation of the proposed method is
presented, employing different metrics such as mean Average
Precision (mAP), Intersection over Union (IoU), Inference
Time, and FLOPs. The enhancements achieved through SS,
KD, and quantization in improving the baseline performance
of the student model are summarized in Table I. The baseline
YOLOVSs detector achieves an mAP of 79.45% with a real-
time inference time of 129 ms. Enhancing this baseline with
SS improves detection mAP (85.98%) while incorporating
KD from a larger YOLOVS5I model further improves accuracy
(91.10%) and mAP (89.76%). Combining Semi-Supervised
Learning and Knowledge Distillation into our proposed SSKD
method leads to significant performance gains across all met-
rics, notably increasing the IoU from 80.88% to 87.45%.
Further applying integer quantization to the SSKD model
significantly reduces the model parameters, FLOPs, and in-
ference time with a minimalist accuracy drop of 1.19%. The
average inference time improvement gain through quantization
is shown in Fig. 5 from 125.12 ms to 67.51 ms.

Table II presents a comparative evaluation of the proposed
method against existing approaches under different model ar-
chitectures. Three teacher-student pairs are analyzed: ViT-Base
with ViT-Tiny, WRN40-4 with MobileNetV2, and ResNet50
with ResNetl8. Several studies, including those by Chen et
al. [19], Cao et al. [10], Cui et al. [20], and Zhao et al.
[7], have utilized SSKD approaches similar to ours. However,
the methods for KD and SS pseudo-label generation vary
uniquely across these works. Notably, Zhao et al. [7] employed
three KD techniques in combination, achieving slightly higher
accuracy and mAP at times, with peak values of 91.19%
and 88.21%, respectively. In contrast, our proposed SSKD
method consistently delivers superior performance across all
configurations, achieving the highest recorded accuracy and
mAP of 91.58% and 88.23%, respectively, using the ViT-
Base/ViT-Tiny pairing. This underscores the efficacy of the
proposed method in enhancing student model performance
while leveraging diverse teacher-student architectures. These
results illustrate that the quantized SSKD model effectively
balances inference speed, memory footprint, and detection
accuracy, making it well-suited for industrial human-machine
collaboration tasks.

V. CONCLUSION

This paper introduces a cutting-edge Digital Twin-Driven
Semi-Supervised Knowledge Distillation framework to address
the challenges of monitoring human-machine collaborations in
Industry 5.0. The framework ensures efficient real-time per-
formance on resource-constrained edge devices by combining
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Fig. 5: Average Inference Time (a) with Quantization and (b) without Quantization on the Edge Device.

synthetic data generated via UE4-based Digital Twins and
ROS2 communication with semi-supervised pseudo-labeling
and knowledge distillation. The lightweight student model,
enhanced through quantization, achieves a remarkable accu-
racy of 94.20% and a significantly low inference latency
of 67.51 ms from 125.12 ms, making it highly suitable
for industrial deployment. Extensive evaluations highlight the
framework’s superior accuracy, scalability, and operational
efficiency compared to state-of-the-art methods. This study
lays the foundation for integrating advanced simulation and
Al-driven solutions to enhance industrial safety and collab-
oration. Future work will focus on extending the framework
to accommodate more complex and dynamic human-machine
collaboration scenarios, integrating multi-modal sensor inputs,
and exploring federated learning to improve model adaptability
and data privacy in distributed environments.
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