Development of Small Data-Based Mathematical
Models for Industrial AI Applications

Ji-yong Hwang, Hyun-woo Oh
ICT-enabled Intelligent Manufacturing Research Section
Electronics and Telecommunications Research Institute
Daejeon, South Korea
jiyongh@etri.re.kr, hyunwoo@etri.re.kr

Abstract— This study explores the potential of applying
industrial AI using small data-based mathematical models in
data-constrained environments. Mathematical models for
predicting slurry viscosity, particle size distribution, and color
were developed based on actual process data. The proposed
models achieved high prediction accuracy with limited data,
supporting effective process monitoring and data-driven
decision-making. These findings suggest that small data-
oriented mathematical modeling is a viable approach for the
practical deployment of industrial Al
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I. INTRODUCTION

Industrial Al plays a key role in improving efficiency and
quality in manufacturing by leveraging large-scale data and
advanced algorithms. However, complex industrial
environments and high data acquisition costs often restrict
access to sufficient high-quality data, limiting the application
of big data-based Al [1]. Under such conditions, methods that
utilize small data containing essential information are
necessary. Mathematical models, based on physical laws and
requiring relatively few data points for parameter estimation,
provide reliable predictions even with limited data [2]. This
study applies regression and predictive modeling techniques
suited for small data to analyze and forecast key industrial
process variables. By demonstrating the development and
application of small data-based mathematical models in slurry
viscosity, particle size distribution, and color prediction for
ceramic and textile dyeing processes, this work aims to
support the broader practical use of industrial Al.

II. CONCEPTUAL FRAMEWORK OF INDUSTRIAL Al

Industrial Al integrates diverse data sources such as
quality metrics, equipment status, supply chain information,
and customer feedback to address complex challenges in
industrial environments. Within the Industry 4.0 paradigm, Al
serves a central role in smart manufacturing by enabling
autonomous diagnostics, predictive maintenance, and quality
control. Explainable AI technologies further enhance the
transparency and reliability of Al-driven systems [3].

Industrial Al supports a wide range of tasks including
process optimization, defect reduction, demand prediction,
and new product development. The system evolves through a
feedback structure that enables continuous learning and
iterative improvement based on accumulated data [4].

Figure 1 presents a conceptual framework encompassing
major data inputs, key functions, application domains, and
performance feedback cycles. This framework illustrates how
industrial AI contributes to the advancement of manufacturing
through real-time data collection, analysis, and prediction-
based decision support.
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Fig. 1. Conceptual framework of Industrial AI with data sources, core
functions, and application areas.

III. CASE STUDIES OF MATHEMATICAL MODELING

This chapter presents mathematical predictive modeling
cases utilizing real-world data collected under limited small
data conditions, focusing on quality improvement and process
stability in ceramic manufacturing and textile dyeing.

A. Slurry Viscosity Prediction in Ceramic Manufacturing
Processes

Accurate prediction of time-varying slurry viscosity is
essential for stabilizing the spray drying stage in ceramic
powder manufacturing. In this study, slurry viscosity was
measured at regular intervals over a 24-hour period following
the ball milling process, under controlled process conditions.
Sixteen regression models were evaluated, and thirteen of
them achieved a coefficient of determination (R?) of 1.000,
demonstrating excellent predictive accuracy even with limited
data [5]. Figure 2 illustrates the comparison between the
measured viscosity values and the model predictions. The
close agreement between the two confirms the reliability of
the modeling approach in capturing viscosity variation. A user
interface was also developed to enable field operators to input
values and monitor prediction curves in real time, facilitating
responsive control and contributing to process stability.
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Fig. 2. Example of mathematical modeling for industrial AIl: Predictive
modeling of slurry viscosity in ceramic processes.

ICTC 2025



®  Measured

104 —— Pred. Model A
/f'\ Pred. Model B
i Pred. Model C
s lnd % °
W\
IS \
£ 3\
= \
E 6 \\\
® Y,
J y
1 A
- { q
1] \\
! A\
3 K

100

Average size (um)

Fig. 3. Example of mathematical modeling for industrial Al: Predictive
modeling of particle size distribution in ceramic processes.

B. Particle Size Distribution Prediction in Ceramic
Manufacturing Processes

To predict particle size distribution, which directly affects
product quality in ceramic spray drying, samples within the
same lot were repeatedly measured and averaged to obtain
reliable data. Based on this, time-series predictive models for
various particle size indicators (D10 to D99, minimum,
maximum, and mean values) were developed [5]. Figure 3
presents a comparison between three mathematical models
and measured data, confirming that the models effectively
replicate the actual measurements. The developed predictive
system enables real-time monitoring of particle size
distribution, thereby enhancing accuracy and efficiency in on-
site quality control.

C. Color Prediction in Textile Dyeing Processes

In textile dyeing processes, accurate prediction of color
characteristics according to dye concentration is essential for
minimizing reproducibility issues and quality variation.
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Fig. 4. Example of mathematical modeling for industrial Al: Predictive

modeling of color properties based on dye concentration in textile dyeing
processes.
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This study developed mathematical models for absorbance
based on reflectance data from actual processes, converting
reflectance to absorbance for single dyes [6]. Among these
models, yellow dye was selected as a representative case, with
results shown in Figure 4. (a) compares measured and
predicted absorbance at four wavelengths, verifying model
accuracy, while (b) visualizes predicted spectra under varying
concentrations within the 410-700 nm range, highlighting
concentration-dependent spectral trends. The single-dye
model was further applied to mixed dyes, achieving high
prediction accuracy and consistent color reproducibility
compared with measured values. This approach supports
systematic quality control in dyeing by reducing variability
and operator dependence.

IV. CONCLUSION

This study aimed to develop small data-based mathematical
models for practical industrial Al applications in data-limited
environments. Focusing on slurry viscosity and particle size
distribution in ceramic manufacturing processes and color
prediction in textile dyeing, the feasibility of applying field-
acquired data models was examined.

The proposed models achieved high predictive accuracy
despite limited data and were implemented with user
interfaces for real-time monitoring and data-driven decision
support. These findings suggest that mathematical modeling
can enhance process quality and operational efficiency,
especially where big data-based Al is challenging to apply.
Future work will expand the models to various processes and
industries, pursuing improved prediction accuracy and
broader applicability through integration with industrial Al.
This approach is expected to support smart manufacturing and
Al transformation (AX).
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