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Abstract— This study explores the potential of applying 
industrial AI using small data-based mathematical models in 
data-constrained environments. Mathematical models for 
predicting slurry viscosity, particle size distribution, and color 
were developed based on actual process data. The proposed 
models achieved high prediction accuracy with limited data, 
supporting effective process monitoring and data-driven 
decision-making. These findings suggest that small data-
oriented mathematical modeling is a viable approach for the 
practical deployment of industrial AI. 
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I. INTRODUCTION 
Industrial AI plays a key role in improving efficiency and 

quality in manufacturing by leveraging large-scale data and 
advanced algorithms. However, complex industrial 
environments and high data acquisition costs often restrict 
access to sufficient high-quality data, limiting the application 
of big data-based AI [1]. Under such conditions, methods that 
utilize small data containing essential information are 
necessary. Mathematical models, based on physical laws and 
requiring relatively few data points for parameter estimation, 
provide reliable predictions even with limited data [2]. This 
study applies regression and predictive modeling techniques 
suited for small data to analyze and forecast key industrial 
process variables. By demonstrating the development and 
application of small data-based mathematical models in slurry 
viscosity, particle size distribution, and color prediction for 
ceramic and textile dyeing processes, this work aims to 
support the broader practical use of industrial AI. 

II. CONCEPTUAL FRAMEWORK OF INDUSTRIAL AI 
Industrial AI integrates diverse data sources such as 

quality metrics, equipment status, supply chain information, 
and customer feedback to address complex challenges in 
industrial environments. Within the Industry 4.0 paradigm, AI 
serves a central role in smart manufacturing by enabling 
autonomous diagnostics, predictive maintenance, and quality 
control. Explainable AI technologies further enhance the 
transparency and reliability of AI-driven systems [3].  

Industrial AI supports a wide range of tasks including 
process optimization, defect reduction, demand prediction, 
and new product development. The system evolves through a 
feedback structure that enables continuous learning and 
iterative improvement based on accumulated data [4].  

Figure 1 presents a conceptual framework encompassing 
major data inputs, key functions, application domains, and 
performance feedback cycles. This framework illustrates how 
industrial AI contributes to the advancement of manufacturing 
through real-time data collection, analysis, and prediction-
based decision support. 

 
Fig. 1. Conceptual framework of Industrial AI with data sources, core 
functions, and application areas. 

III. CASE STUDIES OF MATHEMATICAL MODELING 
This chapter presents mathematical predictive modeling 

cases utilizing real-world data collected under limited small 
data conditions, focusing on quality improvement and process 
stability in ceramic manufacturing and textile dyeing. 

A. Slurry Viscosity Prediction in Ceramic Manufacturing 
Processes 
Accurate prediction of time-varying slurry viscosity is 

essential for stabilizing the spray drying stage in ceramic 
powder manufacturing. In this study, slurry viscosity was 
measured at regular intervals over a 24-hour period following 
the ball milling process, under controlled process conditions. 
Sixteen regression models were evaluated, and thirteen of 
them achieved a coefficient of determination (R²) of 1.000, 
demonstrating excellent predictive accuracy even with limited 
data [5]. Figure 2 illustrates the comparison between the 
measured viscosity values and the model predictions. The 
close agreement between the two confirms the reliability of 
the modeling approach in capturing viscosity variation. A user 
interface was also developed to enable field operators to input 
values and monitor prediction curves in real time, facilitating 
responsive control and contributing to process stability. 

 
Fig. 2. Example of mathematical modeling for industrial AI: Predictive 
modeling of slurry viscosity in ceramic processes. 
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Fig. 3. Example of mathematical modeling for industrial AI: Predictive 
modeling of particle size distribution in ceramic processes. 

B. Particle Size Distribution Prediction in Ceramic 
Manufacturing Processes 
To predict particle size distribution, which directly affects 

product quality in ceramic spray drying, samples within the 
same lot were repeatedly measured and averaged to obtain 
reliable data. Based on this, time-series predictive models for 
various particle size indicators (D10 to D99, minimum, 
maximum, and mean values) were developed [5]. Figure 3 
presents a comparison between three mathematical models 
and measured data, confirming that the models effectively 
replicate the actual measurements. The developed predictive 
system enables real-time monitoring of particle size 
distribution, thereby enhancing accuracy and efficiency in on-
site quality control. 

C. Color Prediction in Textile Dyeing Processes 
In textile dyeing processes, accurate prediction of color 

characteristics according to dye concentration is essential for 
minimizing reproducibility issues and quality variation.  

 
Fig. 4. Example of mathematical modeling for industrial AI: Predictive 
modeling of color properties based on dye concentration in textile dyeing 
processes. 

This study developed mathematical models for absorbance 
based on reflectance data from actual processes, converting 
reflectance to absorbance for single dyes [6]. Among these 
models, yellow dye was selected as a representative case, with 
results shown in Figure 4. (a) compares measured and 
predicted absorbance at four wavelengths, verifying model 
accuracy, while (b) visualizes predicted spectra under varying 
concentrations within the 410–700 nm range, highlighting 
concentration-dependent spectral trends. The single-dye 
model was further applied to mixed dyes, achieving high 
prediction accuracy and consistent color reproducibility 
compared with measured values. This approach supports 
systematic quality control in dyeing by reducing variability 
and operator dependence. 

IV. CONCLUSION 
This study aimed to develop small data-based mathematical 

models for practical industrial AI applications in data-limited 
environments. Focusing on slurry viscosity and particle size 
distribution in ceramic manufacturing processes and color 
prediction in textile dyeing, the feasibility of applying field-
acquired data models was examined. 

The proposed models achieved high predictive accuracy 
despite limited data and were implemented with user 
interfaces for real-time monitoring and data-driven decision 
support. These findings suggest that mathematical modeling 
can enhance process quality and operational efficiency, 
especially where big data-based AI is challenging to apply. 
Future work will expand the models to various processes and 
industries, pursuing improved prediction accuracy and 
broader applicability through integration with industrial AI. 
This approach is expected to support smart manufacturing and 
AI transformation (AX). 
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