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Abstract—Lustre is a widely adopted parallel file system in
high-performance computing (HPC) environments. However, as
clusters increasingly incorporate heterogeneous storage devices
with varying performance characteristics, Lustre’s default strip-
ing mechanism fails to fully leverage the capabilities of faster
devices and can even degrade I/O performance. We propose an
adaptive, heterogeneity-aware striping mechanism that automat-
ically distributes I/O workload based on the resource capability
of each storage device.

Index Terms—Distributed systems, File systems, Heteroge-
neous cluster, High-performance Computing (HPC), Lustre,
Striping

I. INTRODUCTION

Lustre has become the de facto standard of scalable parallel
file systems in HPC and AI workloads, where massive I/O per-
formance is achieved through data striping across multiple Ob-
ject Storage Targets (OSTs) [1]. Modern Lustre deployments
increasingly adopt heterogeneous storage configurations, com-
bining SATA SSDs, SAS drives, and NVMe SSDs [2]. In
such heterogeneous environments, uniform striping may lead
to suboptimal performance due to unbalanced I/O workloads
and uncoordinated lock contention.
Several enhancements to Lustre striping have been proposed

to improve I/O performance and adaptability. Overstriping
allows multiple stripes per OST to mitigate contention and
improve parallelism [3]. Dynamic striping adapts stripe param-
eters based on file size or access patterns [4], [5]. However,
these approaches do not account for the performance disparity
inherent in heterogeneous storage environments. This limita-
tion becomes critical when workloads require consistent high
throughput.
Our experiments reveal that Lustre’s performance remains

largely unaffected by the type of underlying storage de-
vices. This results from a critical limitation of Lustre’s
default striping policy, which statically assigns I/O with-
out considering discrepant storage performance. We propose
a heterogeneity-aware striping mechanism that incorporates
computing resource-based weighting and adaptive OST se-
lection for more balanced and efficient use of heterogeneous
storage environments.

II. MOTIVATION

To evaluate the impact of storage configurations on Lustre
performance, we conducted a series of IOR write benchmarks.
To investigate striping performance, each Object Storage
Server (OSS) is configured with two OSTs, employing direct
I/O to bypass the cache and accurately capture the native
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Fig. 1. Write I/O bandwidth of IOR benchmarks, where each process wrote
1GB of data, for a total of 24GB.

device performance. Figure 1 shows write performance on
heterogeneous storage configurations with SATA and NVMe
SSDs. It displays three stripe distribution scenarios: all stripes
on two SATA SSDs, uniform striping across a SATA SSD
and an NVMe SSD, and all stripes on two NVMe SSDs. In
this dual-OSS setup, all three striping distributions perform
nearly identical write bandwidth (i.e., 153MB/s). Given that
RPC and transfer limits were fully relaxed in our experiments,
this counterintuitive result suggests that factors beyond net-
work or RPC constraints dominate the observed performance.
This study demonstrates that naı̈ve stripe allocation to high-
performance devices does not guarantee optimal performance.
As a result, storage performance becomes constrained not by
hardware potential but by policy limitations.

However, the existing Lustre architecture does not provide
mechanisms to handle computing resource heterogeneity. By
default, clients receive a static list of OSTs (lov_config)
from the Management Service (MGS) and apply a round-
robin or user-defined striping policy across them. However, no
performance feedback loop exists between the OSS nodes and
the client, meaning high-load or underperforming OSTs are
treated equally with idle or high-performance ones. Moreover,
no component in the management server centrally monitors
resources and incorporates them into striping decisions. While
such data is available through tools like /proc, /sys, vmstat, or
iostat on the OSS nodes, clients cannot query this information
in real-time during stripe allocation. Given the absence of
resource-aware striping at the client side and centralized
monitoring in the management service, integrating real-time
OSS performance metrics into striping decisions is essential
for efficient resource utilization.
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Fig. 2. The Redesigned Lustre architecture and the overall striping process.
Colored squares mark the redesigned Lustre components. The hollow arrows
indicate the heterogeneity-aware striping mechanism, which adopts the peri-
odic mechanism represented by the plain ones.

III. PROPOSED ARCHITECTURE

Figure 2 presents the redesigned Lustre architecture and de-
scribes the overall process of the heterogeneity-aware striping
mechanism (Beacon → Monitor → LOV → OSD). We
propose a modular extension to the legacy architecture that
integrates system resource awareness into the MGS and client-
side striping logic. The design is structured in three modules:
(1) the deployment of a lightweight resource beaconing system
on each OSS, (2) the deployment of a resource monitoring
layer in the MGS to fetch, aggregate and transmit resource
utilization logs, and (3) the modification of the client’s Logical
Object Volume (LOV) to utilize these resource insights during
file creation.

A. Resource Beaconing on OSS

In the first stage, each OSS is equipped with a lightweight
daemon that periodically collects system-level metrics. These
include CPU utilization, memory usage, and storage perfor-
mance collected via standard system monitoring tools, as well
as OST-level utilization statistics obtained from the Object
Storage Device (OSD) layer (i.e., osd-ldiskfs) through Lustre’s
procfs interface. The collected data is encapsulated in a
structured ResourceBeacon and periodically transmitted to the
MGS via RPC at configurable intervals.

B. Resource Monitoring on MGS

The core of the proposed architecture is the Resource-
Monitor, a component integrated into the MGS that fetches
and aggregates resource metrics from all OSS nodes. By
organizing this novel component into three functional modules,
clients no longer need to parse raw system metrics while
maintaining the legacy metadata flow through the MDS.

• Beacon Listener receives incoming ResourceBeacons
from each OSS and extracts relevant resource metrics.

• State Aggregator retains an in-memory database of per-
OST resource states. It optionally exports this information

via procfs or sysfs for integration with system-level
tools. It also marks certain OSTs as degraded or over-
loaded based on customizable thresholds to dynamically
blacklist them.

• Striping Agent responds to client queries with prepro-
cessed resource summaries such as ranked OST lists or
filtering lists.

C. Striping on Client LOV Layer

Clients retrieve metadata—including stripe count, size, and
target OSTs—from the MDS at file creation time and rely on
these static instructions during the file I/O. To enable resource-
aware striping without disrupting this legacy workflow, we
extend the LOV layer to interact with the ResourceMonitor
with two additional modules.

• Striping Agent initiates a query to the MGS-side Strip-
ing Agent to obtain up-to-date resource information for
available OSTs. This communication occurs before stripe
selection, allowing the client to receive a filtered or
ranked list of OST candidates based on the current
resource utilization.

• OST Mapper selects the target OSTs for data striping
based on the given policy from the client-side Striping
Agent. This information is then passed to the standard
lov_object_alloc() function, which creates the
LOV object accordingly.

IV. CONCLUSION AND FUTURE WORK

This paper proposed the redesigned striping mechanism in
Lustre filesystem to improve resource utilization in hetero-
geneous storage systems. Our approach introduces a mod-
ular extension that integrates OSS-side resource beaconing,
centralized resource monitoring on the MGS, and a modified
client LOV layer, enabling informed striping decisions based
on real-time system resource usage. Future work will involve
implementing the proposed striping policies and evaluating
the effectiveness of real-time re-striping mechanisms under
workload prediction.
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