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Abstract—Unmanned Aerial Vehicle (UAV) swarms are increas-
ingly deployed in Industrial Internet of Things (IIoT) appli-
cations, but remain vulnerable to Positioning, Navigation, and
Timing (PNT) spoofing and federated model poisoning, which
threaten safety and mission reliability. Traditional cloud-centric
or heavyweight blockchain solutions suffer from latency and
scalability limits in UAV-class hardware. This paper proposes a
hybrid framework that integrates Horizontal Federated Learning
(HFL) with a lightweight DAG-based blockchain. The HFL layer
enables privacy-preserving anomaly detection with Byzantine-
robust aggregation, while the DAG blockchain ensures low-latency
consensus, tamper-proof anomaly logging, and update reputation
tracking. Experimental validation on a GNSS spoofing dataset
shows 81.5% detection accuracy under non-IID data (vs. 52.5%
FedAvg), 62% lower testing loss, and sub-second transaction
latency (0.85 s) with 25 MB lower communication cost per round.
The proposed design establishes a unified, auditable, and scalable
defense pipeline, advancing resilient UAV swarm communication
infrastructures for IIoT logistics, inspection, and surveillance.

Index Terms—Federated Learning, Lightweight Blockchain,
UAV Swarm Communications, Positioning-Navigation-Timing
(PNT) Security, Model Poisoning Defense, Industrial Internet of
Things (IIoT), Secure Communication Networks, Low-Latency
Consensus I. INTRODUCTION

Global Positioning System (GPS) and Global Navigation
Satellite System (GNSS) spoofing attacks are becoming in-
creasingly important due to their impact on positioning, navi-
gation, and timing (PNT) security, as well as their significant
risks to privacy and infrastructure in civilian and military do-
mains [1]. The rapid integration of drone swarms into Industrial
Internet of Things (IIoT) applications has revolutionized sectors
such as smart logistics, industrial inspection, and precision
agriculture [2]. These autonomous aerial vehicles, capable of
operating collaboratively in swarm formations, offer flexibility,
scalability, and real-time situational awareness. However, their
increasing deployment in mission-critical industrial environ-
ments has concurrently expanded their attack surface, exposing
them to severe cybersecurity threats. These include GPS spoof-
ing, communication jamming, data interception, and command
injection attacks [3], [4]. As the number of interconnected
drones grows, so does the complexity of securing their com-
munication and coordination in a scalable and efficient manner.
Hence, UAV PNT data are the prime targets of intruders.

In UAV swarms, PNT attacks (GPS/GNSS spoofing/jam-
ming) target navigation and coordination indirectly. They do
not interfere with swarm data links, but they disrupt position-
ing synchronization, which can cause swarm miscoordination,
collisions, or mission failure. Traditional cloud-centric security
frameworks are often inadequate for drone swarms PNT attacks
due to their reliance on continuous network connectivity and
centralized processing. These approaches suffer from high
latency, single points of failure, and limited adaptability to
dynamic topologies [5].

Fig. 1: (Left:) UAV swarm communication network layers
highlighting PNT and Model Poisoning Attack; (Right:) Layer
diagram showing overlap of security threats (communication,
ML, and PNT layers)

In industrial UAV swarms (e.g., inspection, delivery, surveil-
lance), federated learning (FL) or distributed AI is often used
so UAVs can collaboratively learn patterns (e.g., obstacle
detection, path optimization). An adversary compromises one
or more UAVs (or communication links) to inject malicious
updates into the shared AI model via model poisoning as
seen in Fig. 1. This degrades swarm intelligence, causes
misclassification, biased path planning, or backdoors. Simply
put, model poisoning undermines the decision layer, PNT
attacks undermine the perception layer — together they can
cause cascading failures in UAV swarms used in industrial
environments.
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TABLE I: Concise Comparison of Existing Methods vs. Proposed HFL–DAG Framework
Work Core Focus Limitations Our Improvement

Zhang et al. (2020) [6] Horizontal FL for IoT anomaly
detection

No blockchain; no model poisoning defense;
not UAV-focused

Robust FL with blockchain-based validation to detec-
t/mitigate poisoning

Kang et al. (2020) [7] Blockchain for vehicular data
sharing (PoW)

High energy/latency; no FL integration DAG consensus replaces PoW; integrates FL for fast,
intelligent UAV comms

Stodt et al. (2025) [8] Lightweight BFT blockchain for
IIoT authentication

No AI/FL; not for UAV coordination or PNT
threats

Combines lightweight blockchain with FL for model
integrity and swarm auditability

Dorri et al. (2017) [9] Consortium blockchain for smart
home IoT

Poor scalability; static IoT only; no FL DAG blockchain scales to mobile UAV swarms; FL adds
real-time intelligence

Proposed Framework
(JDM)

Integrated HFL + DAG
Blockchain for UAV Security

Unified pipeline for poisoning/PNT defense, low-latency logging, privacy, and scalability

Blockchain (BC) has been widely explored for ensuring
decentralized trust and tamper-proof records in UAV networks
[7], [9]. However, classical protocols such as Proof of Work
(PoW) and Proof of Stake (PoS) impose heavy computational
and energy costs, often exceeding UAV-class capabilities [10].
Lightweight blockchain approaches based on consortium mod-
els or simplified BFT protocols [?] improve efficiency but still
face scalability bottlenecks, hindering real-time PNT security.
Directed Acyclic Graph (DAG) blockchains, supporting parallel
validation and sub-second latency with minimal energy over-
head, are promising. Yet, integration with Federated Learning
(FL) to jointly counter PNT spoofing and model poisoning
remains largely unexplored, motivating this work.

To counter PNT spoofing and model poisoning threats in
UAV swarm communication, this paper introduces a hybrid
framework merging Horizontal Federated Learning (HFL) with
a lightweight DAG-based blockchain. HFL enables decentral-
ized training on drones using consistent feature sets from varied
locations while preserving privacy and reducing communi-
cation load [11]. The DAG blockchain ensures low-latency,
energy-efficient consensus, providing decentralized trust and
tamper-proof logging suited to UAV resource constraints.

The key contributions of this paper are as follows:

• Novel HFL–DAG Integration: We introduce the first
framework combining Horizontal Federated Learning
(HFL) with a lightweight DAG-based blockchain to jointly
mitigate PNT spoofing and model poisoning in UAV
swarm communications for Industrial IoT applications

• Low-Latency Consensus: The DAG protocol attains sub-
second transaction latency (0.85 s) and cuts communica-
tion overhead by over 25 MB per round, outperforming
PoW/PoS designs.

• Enhanced Anomaly Detection: Our PNT-aware,
reputation-weighted HFL raises accuracy to 81.5% versus
52.5% (FedAvg) and 67.0% (centralized) while halving
Class-3 false alarms.

• Poisoning-Resilient Learning: Byzantine aggregation,
clipping, and ledger reputation reduce convergence rounds
by 40% and lower final loss by 62%.

• Deployable Design: Implemented on ROS 2 + micro-
ROS/XRCE-DDS, demonstrating scalability and practical
UAV readiness.

In summary, this work provides a privacy-preserving,
tamper-proof, and low-latency defense framework for UAV
swarms, achieving significant improvements in detection ac-
curacy, communication efficiency, and resilience compared
to existing methods. The rest of the paper is organized as
follows: Section II presents the system design; Section III
details the proposed methodology; Section IV presents results
discussion; and Section V concludes with implications and
future directions.

II. JOINT DEFENSE MODEL FOR PNT SPOOFING AND
MODEL POISONING IN UAV SWARM HFL

The proposed joint defense model (JDM) architecture com-
prises four (4) core tiers: Perception Layer, Edge-AI Layer
for Local learning, FL Aggregation Layer, and a Blockchain
Network Layer, as depicted in Fig. 2. Each drone is equipped
with onboard sensing, processing, and communication modules
for perception. Local learning is carried by each drone with
its data at the edge. The drones communicate with nearby
edge nodes for model aggregation via an FL strategy and the
lightweight blockchain synchronization ensures admissibility
and reputation. Edge nodes maintain a distributed ledger shared
across the swarm and interface with external IIoT infrastruc-
ture.

We modelled the UAV swarm learning mathematically under
adversarial conditions, addressing both (i) PNT spoofing at-
tacks (GNSS/GPS deception) and (ii) model poisoning attacks
in horizontal federated learning (HFL) with a DAG-based
blockchain ledger.
A. Local Training at the Edge

Each UAV i ∈ N trains locally on its dataset Di, starting
from the global model Wt:

min
W

Fi(W ) = E(x,y)∼Di
[ℓ(fW (x), y)] , (1)

leading to a local update:

∆W t
i ≈ −η∇Fi(Wt). (2)

To bound influence, we apply update clipping:

∆̂W
t

i = ∆W t
i ·min

(
1,

C

∥∆W t
i ∥2

)
. (3)

where N is Total number of participating UAVs (clients) in
the swarm; Di is the local dataset stored on UAV i (sensor,
telemetry, or mission data); and W = model weight.
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pgnssi , ci , ∆τi

IMU / Vision
Odometry
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PNT Anomaly
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∥pgnssi − pfusei ∥2 + α|∆τi |+ β Var(ci ) + γmedj∥pgnssi − pgnssj ∥2

PNT Trust tti
tti = σ(−κati )

DAG Ledger
Admissibility χt
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r t+1
i = (1− ρ)r ti + ρs ti

Local Data Di

Local Train
∆W t

i ≈ −η∇Fi (Wt)

Clipping

∆̂W
t

i = ∆W t
i min

(
1, C

∥∆Wt
i ∥2

) Update Quality
qti (val. gain)

Weight w t
i

w t
i ∝ χt

i (t
t
i )

λt (r ti )
λr (qti )

λq

Byzantine-robust Aggregation A
(median / trimmed mean / Krum)

∆̃W
t
= A({∆̂W

t

i })

Weighted Sum

∆W
t
=

∑

i

w t
i ∆̂W

t

i

Global Update

Wt+1 = Wt + ηg ∆W
t

PNT-aware, reputation-weighted HFL over DAG:
PNT spoofing ⇒ ati ↑⇒ tti ↓⇒ wt

i ↓;
Poisoning ⇒ clipping + robust A + low r ti ⇒ wt

i ↓.

Perception Layer

AI Learning (Local)

FL Aggregation (Global/Edge)

Blockchain Ledger

Fig. 2: Proposed Joint Defense Model for Secured UAV PNT, highlighting the 4-tier cores: Perception Layer, Edge AI Layer,
HFL Layer, and Blockchain Layer.

B. PNT Spoofing Detection
We defined an anomaly score ati based on sensor fusion mis-

match, timing offset, carrier-to-noise variation, and neighbor
consistency:

a
t
i = ∥pgnss

i − p
fuse
i ∥2 +α|∆τi|+βVar(ci)+ γ medj∈N(i)∥p

gnss
i − p

gnss
j ∥2.

(4)We convert this into a PNT trust score:

tti = σ(−κati) =
1

1 + eκa
t
i

, κ > 0. (5)

where pgnssi (t) : GNSS/GPS position reported by UAV i at
epoch t; pfusei (t) : Position estimated from IMU/vision fusion
for UAV i at epoch t; ati : Anomaly score (distance between
GNSS and fused estimate); sti : Spoofing flag (binary variable;
= spoof if spoofing is suspected); α : Sensitivity parameter
for anomaly decay; and β : Penalty parameter for spoofing
detection.

C. Ledger Admissibility and Reputation

Each update is signed and verified on the DAG ledger. Define
the admissibility indicator:
χt
i = 1

{
VerifySig(∆W t

i ) = true, ∥∆W t
i ∥2 ≤ Cmax, meta ok

}
.

(6)Reputation is updated over time:

rt+1
i = (1− ρ)rti + ρ sti, (7)

where

sti = 1{update accepted and non-outlier}, ρ ∈ (0, 1].
(8)

D. Robust, PNT-Aware Weighting
Each UAV’s contribution is weighted by PNT trust, reputa-

tion, and update quality:

wt
i =

χt
i(t

t
i)

λt(rti)
λr (qti)

λq∑
j∈N χt

j(t
t
j)

λt(rtj)
λr (qtj)

λq
, (9)

with λt, λr, λq ≥ 0.
A Byzantine-robust aggregator A (e.g., coordinate-wise me-

dian, trimmed mean, or Krum) is applied:
∆̃W

t
= A

(
{∆̂W

t

i}i∈N

)
. (10)

The weighted update is:
∆W

t
=

∑
i∈N

wt
i ∆̂W

t

i. (11)

E. Global Model Update

The global model is updated as:
Wt+1 = Wt + ηg ∆W

t
, ηg > 0. (12)

We assume an upper bound on the adversary fraction:

ϕt =
#{malicious or flagged clients}

|N |
≤ ϕmax. (13)

F. Equivalent Objective
This corresponds to minimizing a reputation- and PNT-

weighted global objective:

min
W

L(W ) =
∑
i∈N

ωt
i E(x,y)∼Di

[
ℓ(fW (x), y)

]
+ λ∥W∥22,

(14)where
ωt
i ∝ tti r

t
i q

t
i . (15)

The proposed UAV JDM cyber-cognitive architecture mech-
anism is summarized as:

• PNT spoofing ↑ ⇒ ati ↑ ⇒ tti ↓ ⇒ wt
i ↓.
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• Model poisoning ↑ ⇒ clipping, robust aggregation, and
low reputation ⇒ wt

i ↓.
• DAG ledger ensures accountability and immutable record

of χt
i, r

t
i .

III. PROPOSED HFL-DAG UAV SWARM PROTOCOL
The system accounts for multiple attack vectors that may

compromise drone communications and FL training integrity,
with emphasis on GPS and GNSS spoofing attacks of different
scales. The concrete protocol is adapted for ROS 2 + micro-
ROS middleware stack, combining HFL with a DAG-based
blockchain to resist model poisoning and PNT (GNSS/GPS)
threats in industrial UAV swarms. The UAV [i] with micro-
ROS client (C/C++ on MCU) runs local training and publishing
updates. The V alidator[j] as the ROS 2 node (either on
UAV or edge) performs tip validation. Then Aggregator[k]
as the ROS 2 node (edge or rotating UAV) performs robust
aggregation. The DAG Ledger Node on the ROS 2 node
implements the DAG data structure. Finally, the pure edge
performs the off-chain storage; ROS 2/ROSBag2 + content-
addressed store (e.g., IPFS plugin or edge cache).
A. Horizontal Federated Learning AI Module

Each UAV in the swarm hosts a lightweight Federated
Learning (FL) engine for secure local training, using on-
board data (e.g., GPS, velocity, temperature, battery status)
to build anomaly detection models without sharing raw data.
The HFL+DAG framework guarantees privacy, auditability,
and secure collaboration, even under adversarial or unstable
conditions. Model updates are sent to the nearest edge node
for aggregation, supported by homomorphic encryption and
optional differential privacy noise to obscure sensitive details
and defend against inference or reconstruction attacks from
malicious participants. A deep fully-connected, hierarchically
compressed neural classifier with a (256→128→64→32) net-
work hidden layer was adopted to ensure progressive reduction
of input features. Table II summarizes the model parameters.

TABLE II: AI Model Parameters
Parameters Values Definitions
Hidden Network
Layers

(256, 128, 64, 32) Learns complex, high-level pat-
terns gradually

Activation Function ReLU Avoid vanishing gradients
Optimizer Adam for adaptive gradient descent

To address the client-drift problem common in FL, we
implemented the Stochastic Controlled Averaging for Federated
Learning (SCAFFOLD) strategy. This is to handle non-IID data
better, improve convergence speed, and boost model accuracy
in heterogeneous environments, thereby making the FL more
reliable and scalable in the real world, where client data is
almost always non-IID. SCAFFOLD introduces global (c) and
local (ci) control variates. The local update at client i during
round t is expressed in Equation (16).

wi
t+1 = wi

t − η
(
∇Fi(w

i
t)− ci + c

)
, (16)

where η is the learning rate, ∇Fi(w
i
t) is the gradient of the

local objective, ci is the client control variate, and c is the
global control variate. The correction term (−ci + c) reduces

the bias caused by non-IID data. Furthermore, we compared
the SCAFFOLD with FedAvg strategy to validate this relia-
bility. In this study, SCAFFOLD is denoted “FL Stratified”,
FedAVg is denoted “FL By prn”, and the centralized model is
“Centralized”.
B. DAG Blockchain Protocol

The DAG-based blockchain protocol ensures data authentic-
ity, integrity, and trust among nodes. To ensure energy-aware
validation, the DAG structure minimizes redundant computa-
tions by enabling parallel block approvals.DAG prevents PNT
spoofing by requiring cryptographic signatures for all UAV
messages, ensuring only legitimate sources are trusted. Also,
it prevents model poisoning by using hash-based CIDs and
signature validation, ensuring that only authentic, untampered
model updates are shared in the swarm. To do this, each UAV
gets a secure identity; generate keypair(node id) (unique
Ed25519 keypair). Then, UAV trains locally, stores weights in
off-chain storage (offchain put) receives a Content Identifier
(CID) via SHA− 256. Messages (including PNT data like
GPS coordinates or timing info) and CID are digitally signed
with their private keys signmessage(). The signed message
is shared in the swarm. Only signed CIDs/messages from
authorized UAVs are accepted. Retrieval (offchainget(cid))
ensures UAVs always pull the exact verified model update.
Other UAVs verify both the hash integrity (CID) and digital
signature before acceptance. For the defense mechanism, fake
GPS/PNT data are nodes that fail signature check while poi-
soned models are nodes that fail hash or signature check. The
PNT integrity and consistency check is summarized as:

vkin = 1

[ √
(x− x′)2 + (y − y′)2 + (z − z′)2

t− t′
≤ εv

]
.

Apnt = vsig ∧ vtime ∧ vkin

On the other hand, the model update integrity check to
prevent model poisoning is summarized as:

Amdl = vsig ∧ vcid

The unified acceptance predicate is given as:

A =

{
Apnt, τ = pnt,
Amdl, τ = mdl.

Process if A = 1, else reject.

To implement this on hardware, for the ROS 2
topics and message definitions, transactions are ROS
2 messages. Larger blobs (model deltas) go off-chain
and are referenced by content IDs. dagmsgs/ModelUpdate
store UAV publishes; dagmsgs/VetVote holds the valida-
tors publish; dagmsgs/Reputation stores reputation up-
dates; dagmsgs/GlobalModel; for aggregated global model
info; dagmsgs/PNTAnomaly; the UAV anomaly reports; and
dagmsgs/MitigationCmd is the mitigation commands.

C. Communication Workflow
The secure communication process among drones and be-

tween drones and edge nodes is governed by a systematic
workflow. For message signing and integrity, all messages ex-
changed are cryptographically signed using blockchain-issued
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public/private key pairs to ensure non-repudiation and authen-
ticity. Telemetry and control messages are encrypted end-to-
end. Only verified and authenticated peers are permitted to
decrypt and interpret the data. Finally, for event Logging and
accountability, each significant event (e.g., command issued,
model update, anomaly alert) is recorded as a transaction in the
DAG-based blockchain. This provides a tamper-proof audit trail
for post-incident analysis. Algorithm 1 captures pseudocode
for UAV, Validator, and Aggregator nodes in the proposed
HFL+DAG-based UAV PNT system.
Algorithm 1: UUAV–Validator–Aggregator Workflow
in the Proposed DAG Protocol

Input: Local model Wlocal, Private key sk, Epoch counter epoch
Output: Global model updates committed to DAG ledger with off-chain

references

1 UAV Node (micro-ROS):
2 while true do
3 Train locally: ∆W ← train local(Wlocal) ;
4 Summarize PNT metrics: pnt ← summarize pnt() ;
5 if pnt.flag local anom then
6 Build anomaly transaction anom ← build anomaly tx(pnt) ;
7 Publish anomaly → dag/pnt_anom ;
8 continue ;
9 end

10 Store ∆W off-chain: cid ← offchain put(∆W ) ;
11 Compute hash: h ← hash bytes(∆W ) ;
12 Construct model update message µ with

(id, epoch, cid, h, loss, acc, pnt, lamport inc()) ;
13 Sign µ with sk, then publish µ → dag/model_update ;
14 if Global model g available for epoch then
15 Wlocal ← apply global(Wlocal, offchain get(g.cid)) ;
16 epoch ← epoch + 1 ;
17 end
18 end
19 Validator Node (ROS 2):
20 foreach Model update transaction tx received do
21 if Signature verification fails then
22 return ;
23 end
24 if norm too large(tx.∆W ) then
25 Publish vet vote(tx, “soft bad”, reason=“norm”) ;
26 continue ;
27 end
28 acc ← quick eval(tx.∆W ) ;
29 if acc < ACC THRESH then
30 Publish vet vote(tx, “soft bad”, reason=“val drop”, metrics=acc) ;
31 else
32 Publish vet vote(tx, “ok”) ;
33 end
34 end
35 Aggregator Node (ROS 2):
36 EPOCH TIME updates ← fetch valid updates(epoch) ;
37 Wg ← robust aggregate(updates,method = “median′′) ;
38 acc ← eval ref(Wg) ;
39 cid ← offchain put(Wg) ;
40 gtx ←

make global model(epoch, cid, hash bytes(Wg), acc, updates) ;
41 Publish gtx → dag/global_model ;
42 foreach u ∈ updates do
43 if flagged(u) then
44 Publish reputation transaction rep tx(u.node id,−1, [u.id]) ;
45 end
46 end

D. Experimental & Simulation Setup

To implement the proposed protocol, we mapped it to ROS 2
(Humble+/Iron) and micro-ROS/XRCE-DDS. Fig. 4 specifies
packages, nodes, topics, QoS, IDL, launch, security (SROS2),
and implementation notes for UAV-class hardware. The FL

model training and simulation were carried out in a Python
environment using Pytorch Framework and other libraries.

The UAV models were trained and tested using the
GNSS/GPS spoofing detection for autonomous vehicles dataset
from IEEE DataPort [12]. The dataset has 158,170 samples, 13
features, 55% legitimate samples (0), and 45% spoof attacks;
Simplistic(1), Intermediate(2), and Sophisticated(3).
The dataset was divided into 70%, 20%, and 10% for training,
testing, and evaluation.

IV. RESULT DISCUSSION & PERFORMANCE EVALUATION

The performance of the proposed HFL–DAG framework was
evaluated against baseline approaches (FedAvg and centralized
training) under GNSS spoofing scenarios and non-IID UAV
data.

A. Federated Learning Accuracy and Latency

Fig. 3 and Table III show that the proposed stratified HFL
strategy achieved 81.5% detection accuracy (vs. 52.5% FedAvg
and 67.0% centralized) and a 62% lower testing loss (0.20 vs.
0.52). Convergence was reached in 95 rounds, compared to 150
rounds with FedAvg, demonstrating 37% faster convergence.
Inference latency remained consistently low, with stable growth
under longer rounds, unlike the oscillatory FedAvg behavior.

B. Blockchain Latency and Overhead

As seen in Table III, the DAG consensus protocol provided
sub-second transaction latency (0.85 s) and reduced communi-
cation overhead by 25 MB per round compared to FedAvg.
This confirms the suitability of DAG consensus for resource-
constrained UAVs, unlike PoW- or PoS-based blockchains.

T Across all metrics, the proposed DAG-based FL Stratified

TABLE III: Performance Comparison: FedAvg (FL By prn) vs
SCAFFOLD (FL Stratified) under Non-IID Data

Metric FL By prn FL Stratified Centralized
Final Accuracy (%) 52.50 81.50 67.00
Convergence Rounds 150.0 95.00 **
Testing Loss (final) 0.52 0.20 6.68
Missed Detection (Class 3) 1.00 0.95 1.00
False Alarm Rate (Class 3) 0.0020 0.0010 0.0015
Communication Cost (MB) 120 95.00 200
Stability under Non-IID Low High Very Low

strategy had the best performance, especially as the GPS/GNSS
attack becomes more sophisticated (Class 3). This is validated
by the minimal missed detection, false alarm rate, and testing
loss values displayed by the DAG-FL Stratified strategy as seen
in Fig. 5.
C. Robustness to Sophisticated Attacks

For Class-3 GNSS spoofing, the framework reduced false
alarms by 50% and minimized missed detections compared
to both FedAvg and centralized baselines. Ledger-based ad-
missibility and reputation scoring ensured poisoned updates
had significantly reduced weight in aggregation. Overall, the
proposed framework delivers a unified, privacy-preserving, and
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Fig. 3: (Left:) Model Prediction & Autnetication Latency; (Middle:) Models Rational Behaviour (F1-Score) to changing
GNSS/GPS Received Signal (Right:) Model Reliability Score (AUC-ROC) on Test Data.

Fig. 4: Implementation Parameters for the UAV-class Hardware

Fig. 5: (Left:) False Alarm Rate of the FedAVg vs Scaffold vs
Centralized (Right:) Missed Detections of FedAvg vs Scaffold
vs Centralized approach on Class 3 PNT Attack.

auditable defense pipeline that improves anomaly detection ac-
curacy by nearly 30 percentage points, accelerates convergence,
and enables low-latency trust establishment for UAV swarms
in IIoT deployments.

V. CONCLUSION & FUTURE WORKS
This paper presented a joint defense framework that inte-

grates Horizontal Federated Learning (HFL) with a lightweight
DAG-based blockchain to secure UAV swarms against PNT
spoofing and model poisoning. Experimental validation showed
81.5% detection accuracy under non-IID data (vs. 52.5%
FedAvg), 62% lower loss, and sub-second consensus latency
(0.85 s) with reduced communication cost (25 MB/round). By
combining robust aggregation, ledger-based reputation, and
tamper-proof anomaly logging, the framework ensures privacy-
preserving, auditable, and scalable UAV communication. Be-
yond technical performance, it advances industrial trust, re-

silience, and safety in IIoT deployments. Future work will
extend to cross-swarm collaboration, adversarial robustness,
and interoperability with public blockchains for broader trans-
parency and adoption.
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