Enhancing Wi-Fi RSSI-Based Indoor Positioning
with a Covariance-Weighted Distance Metric
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Abstract— This study proposes a distance metric for Wi-Fi
RSSI-based indoor positioning systems to improve data
collection efficiency. In traditional fingerprinting-based
localization, the instability of RSSI signals necessitates repeated
measurements at each reference point to ensure accurate
localization. To address this limitation, we introduce a
covariance-weighted distance metric that incorporates the
spatial variability of RSSI signals through a covariance matrix.
Experimental results demonstrate that the proposed metric
achieves comparable or higher localization accuracy with fewer
repeated measurements, particularly in open environments,
thereby reducing deployment time and cost. In closed
environments, the metric provides slight improvements over
conventional Euclidean and cosine distances. This work
highlights the potential of leveraging spatial RSSI variability to
enhance the efficiency of indoor positioning systems.
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[. INTRODUCTION

Wi-Fi-based indoor positioning is critical in environments
where GPS signals are weak. Among existing techniques,
fingerprinting is widely adopted due to its simplicity and
general applicability. In fingerprinting, received signal
strength indicator (RSSI) data are collected at multiple
reference points during the offline phase to construct a
fingerprint database. In the online phase, a user’s location is
estimated by comparing real-time RSSI vectors with the
database [1] [2] [3] [4] [51[6].

RSSI signals are unstable due to multipath propagation,
reflections, and interference. Consequently, repeated
measurements at each reference point are typically required to
achieve consistent accuracy, significantly increasing data
collection effort, deployment time, and cost [1][5][6].

Existing distance metrics such as Euclidean, cosine, and
Mabhalanobis distances have limitations in exploiting the
spatial variability of RSSI signals. Euclidean and cosine
distances ignore correlations among signal dimensions, while
Mahalanobis distance, using the inverse covariance matrix,
tends to compress directions of high variance, potentially
diminishing meaningful spatial variations [2][5].
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To address these limitations, we propose a covariance-
weighted distance metric that directly incorporates the
covariance matrix of RSSI signals across multiple reference
points, emphasizing how signals co-vary spatially. This metric
allows the extraction of discriminative features with fewer
measurements, improving fingerprinting efficiency. We
evaluate the metric’s performance under both open and closed
spatial structures and compare it to conventional distance
metrics in terms of localization accuracy and measurement
efficiency.

II. RELATED WORK

A. RSSI-Based Indoor Localization

Fingerprinting is a prevalent RSSI-based localization
technique. Its primary advantage lies in utilizing existing Wi-
Fi infrastructure without modification. Despite its simplicity,
RSSI variability due to environmental effects often limits
localization accuracy and consistency [1][5][6].

B. Distance Metrics and Measurement Efficiency

Distance metrics determine the similarity between
fingerprint databases and real-time RSSI measurements.
Euclidean and cosine distances are common but fail to capture
correlations and spatial variations. Mahalanobis distance
accounts for variable correlations but may compress high-
variance directions. Recent studies [3][4][5][6] have proposed
methods to leverage RSSI variability, reduce repeated
measurements, and enhance localization efficiency. Our
proposed metric directly leverages covariance to emphasize
spatial signal variations, allowing fewer repeated
measurements to achieve reliable localization.

III. DATASET AND METHODOLOGY

A. Dataset

Data were collected in an indoor building environment at
60 reference points. At each point, 20 RSSI measurements
were taken with at least six-minute intervals, resulting in 1,200
measurements. Reference points were categorized into open
(21 points) and closed (21 points) environments, while 18
points were excluded from analysis. Data were structured as
vectors per location and measurement repetition and
preprocessed for classification.
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Fig.1. Indoor Layout and Measurement Paths.

The measurement points were categorized according to
spatial characteristics: closed environments (e.g., narrow
corridors, partitioned rooms), consisting of 21 reference points
(Fig. 1, Group A), and open environments (e.g., wide corridors,
open spaces), consisting of another 21 reference points (Fig.
1, Group B). The remaining 18 points were excluded from the
analysis.

The collected RSSI data were represented as vectors based
on both location and measurement repetition. These vectors
were further transformed into a structured format using a pivot
table, followed by preprocessing to refine the dataset for
classification experiments. This procedure ensured the
construction of consistent input vectors that reflect both
spatial characteristics and signal quality of the measurement
environment.

B. Methodology

e Distance Metrics: Three distance-based algorithms
were compared: Euclidean, cosine, and the proposed
covariance-weighted distance.

e (Covariance-Weighted Distance: Unlike Mahalanobis
distance, the covariance matrix itself (not its inverse)
is used to compute distance, capturing co-variations of
RSSI signals across all reference points.

e Classification Procedure: To evaluate location
classification performance, pairs of measurement
points were constructed. For each class (reference
point), an average RSSI vector was computed from the
training data. Test samples were then compared with
these class-average vectors, and the closest match
determined the predicted location. This process is
visually illustrated in Fig. 2.

e Evaluation: Accuracy was measured against the
number of repeated measurements, and performance
differences were analyzed between open and closed
environments. Results were visualized to show
convergence trends with increasing measurements.

IV. RESULTS

A. Open Environment

In open environments, the proposed covariance-weighted
distance achieved the best performance. It reached the
accuracy level of conventional Euclidean and cosine distances
with significantly fewer repeated measurements, indicating
effective capture of subtle spatial variations in AP signals (Fig.
3-5).

B. Closed Environment

In closed environments, the performance difference was
minimal. The complex spatial structure, such as walls and

for each pair of points (A, B) in all_point_pairs:
# Step 1: Compute average RSSI vectors (1A, u_B)
mu_A = average of training samples at point A
mu_B = average of training samples at point B

correct =0
total =0

# Step 2: Classify each test sample from point A or B
for each x_test in test samples from A or B:

sim_A = distance function(x_test, mu_A)

sim_B = distance_function(x_test, mu_B)

# Step 3: Predict the point with higher similarity
predicted = A if sim_A >sim_B else B

# Step 4: Evaluate prediction

if predicted == true_label of x_test:
correct += 1

total +=1

# Step 5: Compute classification accuracy
accuracy = correct / total

Fig.2. Pseudocode for Point-Pair Classification Based on
RSSI Profiles

obstacles, produces distinct RSSI patterns. Traditional metrics,
therefore, remain effective, and the proposed method provided
only marginal improvement (Fig. 6-8).

V. DISCUSSION

This study proposed an approach to improve data
collection efficiency in Wi-Fi RSSI-based indoor localization
systems by employing a covariance-weighted distance metric.
Experimental results demonstrate that the proposed method
achieves higher accuracy with fewer repeated measurements
in open environments. This can be attributed to the inherent
spatial variability of RSSI signals, which reflects the unique
propagation characteristics of each location. Unlike traditional
Euclidean distance, which ignores such variability, or
Mabhalanobis distance, which compresses it through
normalization, the covariance-weighted distance emphasizes
how RSSI values co-vary across multiple reference points.
This effect is analogous to principal component analysis,
effectively expanding distances along directions with greater
variance and enhancing discrimination between locations.

The point-pair classification approach further illustrates
the effectiveness of this method. By constructing average
RSSI vectors for each reference point from training data and
comparing them with test samples, the method classifies the
most similar location, providing a structured way to evaluate
classification performance (Fig. 2). Results indicate that, in
open environments with relatively uniform signal
distributions, subtle spatial variations are captured efficiently,
reducing the need for extensive repeated measurements. In
contrast, closed environments with walls and obstacles
inherently produce pronounced RSSI pattern differences,
allowing traditional Euclidean and cosine metrics to remain
effective. Consequently, only marginal improvements were
observed in such environments.
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Accuracy by Repetition and Distance in Open Space
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Fig.3. Localization Accuracy by Repetition and
Distance in an Open Space (Cosine).
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Fig.4. Localization Accuracy by Repetition and
Distance in an Open Space (Euclidean).
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Fig.5. Localization Accuracy by Repetition and

Distance in an Open Space (Weighted).

VI. CONCLUSION

The proposed covariance-weighted distance method
highlights the potential of leveraging the spatial variability of
RSSI signals to improve localization efficiency. It offers a
practical means to reduce both the time and cost associated
with fingerprinting-based system deployment, particularly in
open indoor spaces.

Limitations of this study include the relatively small
number of reference points (21 per environment type) and the
focus on a single building structure, which may affect
generalizability. Future work will extend this approach by
incorporating dynamic environmental variations, validating
the method across diverse architectural structures, and
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Fig.6. Localization Accuracy by Repetition and
Distance in an Enclosed Space (Cosine).
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Fig.7. Localization Accuracy by Repetition and
Distance in an Enclosed Space (Euclidean).
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Fig.8. Localization Accuracy by Repetition and
Distance in an Enclosed Space (Weighted).

exploring integration with machine learning models to further
enhance robustness and scalability.
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