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Abstract—Intelligent Transportation Systems (ITS) increas-
ingly leverage edge intelligence for real-time, privacy-preserving,
and safety-critical decision-making. However, conventional Fed-
erated Learning (FL) frameworks face challenges such as unver-
ifiable updates, central points of failure, and limited scalability.
To overcome these issues, we propose PureChain, a scalable FL
framework integrated with a permissioned blockchain to enable
secure, auditable, and decentralized learning across connected
vehicles and road infrastructure. Smart contracts and blockchain
validation ensure traceability and integrity of model updates. We
simulated the system using three benchmark datasets (BurST-
ADMA, Veremi, CICIoV2024), analyzing how variations in client
participation and training rounds influence training efficiency
and convergence behavior. The results showed a strong linear
relationship between the number of clients and sample vol-
ume. Extended training improves convergence stability, even
in dynamic environments. These findings affirm PureChain’s
suitability for Software-Defined ITS (SD-ITS), offering both
architectural resilience and practical insights for optimizing
training configurations in real-world vehicular networks.

Index Terms—Blockchain, Data Efficiency, Edge AI, Federated
Learning, Intelligent Transportation Systems, PureChain, Scala-
bility.

I. INTRODUCTION

The advancement of urban mobility requires transportation
systems that are intelligent, secure, scalable, and sustainable.
Intelligent Transportation Systems (ITS) have emerged as
a critical component in achieving this goal by integrating
communication, control, and information technologies into
vehicles and transportation infrastructure [1]. These systems
improve safety, reduce congestion, and improve environmen-
tal sustainability, making them essential for modern cities.
In recent years, ITS architectures have evolved to incorpo-
rate advanced capabilities, including real-time data exchange,
edge intelligence, and adaptive control. Technologies such as
vehicular-to-everything (V2X) communication, roadside units
(RSUs), and vehicular ad hoc networks (VANETs) facilitate
distributed intelligence in dynamic traffic environments [2].
With the emergence of edge computing and the anticipated
shift towards 6G networks, ITS is increasingly becoming
software-defined and data-driven [3]. By giving ITS the ability
to make decisions independently and utilize predictive ana-
lytics, this change significantly enhances traffic control and
accident avoidance.

Federated learning (FL) has emerged as a powerful approach
to collaboratively train models at distributed vehicular nodes
without compromising data privacy [4]. It enables localized
model updates while avoiding the need to transmit raw data,
which is especially vital in privacy-sensitive and bandwidth-
constrained vehicular environments. Advanced FL mecha-
nisms, including asynchronous updates, intelligent client se-
lection, and edge-aware aggregation [5], further improve per-
formance in mobile and latency-sensitive scenarios. However,
ensuring the integrity, traceability, and auditability of feder-
ated updates across heterogeneous nodes presents challenges.
To address this, blockchain technology has been integrated
into FL frameworks, enabling decentralized trust through
immutable records and smart contract-based control [6], [7].
This integration is particularly effective in Software-Defined
Intelligent Transportation Systems (SD-ITS), where stakehold-
ers operate with varying levels of trust, and the system must
withstand adversarial conditions.

Despite recent advances in FL for vehicular networks, a crit-
ical gap remains, the impact of participation parameters such
as client count and training rounds on data efficiency, consis-
tency, and scalability is underexplored. Although blockchain-
integrated FL frameworks address trust and security [7], [8],
few offer empirical benchmarks on the participation scale
in ITS datasets. This limits the deployment of efficient FL
systems in dynamic and resource-constrained environments.
To bridge this gap, we introduce PureChain-FL, a blockchain-
assisted FL framework that supports decentralized coordina-
tion, auditability, and adaptive participation. Our evaluation
reveals how participation settings influence convergence and
utility in real-world ITS scenarios. The significant contribu-
tions of this paper are:

1) We design a system-level architecture for PureChain-
FL suited for secure, scalable, and decentralized model
training in SD-ITS.

2) We conducted simulation-based evaluations to assess
how varying participation parameters affect data collec-
tion, model convergence, and system performance.

3) We validate the proposed framework on three bench-
mark vehicular datasets: BurST-ADMA, Veremi, and CI-
CIoV2024, demonstrating generalizability under various
ITS conditions.
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The remainder of this paper is structured as follows: Sec-
tion II presents related works on FL and blockchain integration
in ITS. Section III details the architecture and operational flow
of the proposed PureChain-FL system. Section IV discusses
the experimental setup, the evaluation results, and the perfor-
mance analysis. Finally, Section V concludes the paper and
outlines future research directions.

II. BACKGROUND AND RELATED STUDIES

FL has garnered significant attention as a privacy-preserving
machine learning paradigm that enables model training in
distributed clients without centralizing sensitive data [9]. By
transmitting only model updates while retaining data on local
edge devices, FL offers strong data privacy guarantees. How-
ever, these benefits are often offset by persistent real-world
challenges, especially in edge and vehicular environments [5].
Notable issues include communication inefficiencies, statis-
tical heterogeneity, sporadic connectivity, and inconsistent
client participation. These factors undermine convergence and
model accuracy in highly dynamic contexts such as vehicular
networks, where node mobility exacerbates instability. To
overcome these challenges, extensive research has introduced
solutions such as zone-based aggregation [4], asynchronous
and adaptive update strategies [5], and participation-aware
optimization techniques that account for client variability and
dynamic system conditions. However, the stochastic nature
of client availability and sparse data distributions continues
to affect the stability of convergence [4]. Furthermore, com-
munication and synchronization bottlenecks hinder the practi-
cal deployment of FL in latency-sensitive ITS environments.
These challenges highlight the need for an additional trust
layer that supports accountability, resilience, and traceability
without compromising performance.

Blockchain technology offers a resilient, decentralized trust
layer for FL, ensuring tamper-resistant and verifiable model
updates through immutability, consensus, and auditability [8].
Moreover, low-latency blockchain frameworks have demon-
strated their viability in real-time ITS applications, where re-
sponsiveness is crucial [7]. Smart contracts further enhance the
ecosystem by enabling secure model aggregation, automated
participant authentication, and the enforcement of protocol
rules [6]. In IoT-based vehicular ecosystems, distributed con-
sensus and auditability mechanisms have proven effective in
managing data integrity across multi-stakeholder infrastruc-
tures [10]. Despite these advancements, FL systems remain
susceptible to a range of adversarial threats, including poison-
ing and model inversion attacks [5]. Research has proposed
mitigation solutions such as safe multiparty computation, ho-
momorphic encryption, and reputation-based smart contracts
to combat these issues [6]. However, a critical research gap
remains underexplored: the impact of FL participation dynam-
ics, specifically the number of clients and training rounds,
on convergence efficiency, accuracy, and communication cost
within mobility-constrained environments [11]. Although par-
ticipation variability is known to influence model performance,

few empirical studies offer benchmarks or frameworks that
quantify these effects under realistic vehicular conditions.

To address this gap, PureChain [12] is proposed; A
blockchain-enabled FL framework tailored for secure and
scalable deployment in SD-ITS. Leveraging PoA2 consensus
mechanism, it integrates decentralized intrusion detection with
federated model updates, enabling tamper-proof logging, fault
tolerance, and privacy preservation. Unlike general-purpose
blockchains, PureChain employs lightweight smart contracts
for autonomous anomaly detection, update verification, and
trust coordination. Optimized for resource-constrained envi-
ronments [12], it supports verifiable collaboration without
raw data exchange. By evaluating participation heterogeneity,
PureChain enhances scalability and efficiency in vehicular FL
applications.

III. SYSTEM METHODOLOGY

The proposed PureChain-FL methodology is designed to
address the challenges of scalability, security, and data effi-
ciency in SD-ITS. As illustrated in Figure 1, the PureChain
architecture features a three-tier design that integrates FL
with a permissioned blockchain network to support verifiable
collaborative learning that preserves privacy.

A. Blockchain Layer

The blockchain layer ensures governance, trust, and trans-
parency in FL through three core components: smart contracts
for decentralized process automation, update validation to
enforce the quality and integrity of model updates, and an
immutable audit trail for traceability and compliance. Al-
gorithm 1 describes the entire PureChain workflow, where
smart contracts automate client coordination, PoA2 consensus
ensures authenticated and context-aware validation of model
updates, and secure aggregation enables privacy-preserving,
decentralized learning across dynamic SD-ITS environments.

B. PureChain Federated Learning Process

The PureChain-FL process defines a five-stage workflow
executed over T communication rounds. At the beginning
of each round t, the orchestrator selects a subset of eligible
vehicles or edge clients, denoted Ct ⊆ {1, ..., N}, from the
total pool of participants N . Each client i ∈ Ct downloads
the global model Mt and performs local training on its private
dataset Di, yielding an updated model M i

t in Equation 1.

M i
t = Train(Mt, D

i). (1)

The client then computes its local model update as in Equa-
tion 2.

∆M i
t = M i

t −Mt. (2)

This update is submitted to the blockchain, forming a trans-
action Txti =

(
∆M i

t , Sigi,Metai
)
, where Sigi and Metai rep-

resent cryptographic and contextual metadata for verification
under the PoA2 consensus mechanism. Only validated updates
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Fig. 1: Overview of PureChain architecture.

Algorithm 1 PureChain Federated Learning with PoA2 Con-
sensus and Smart Contract Validation

1: Initialize global model M0

2: for each round t = 1, 2, ..., T do
3: Select subset of clients Ct from total clients N via smart

contract
4: for each client i ∈ Ct in parallel do
5: Train local model M i

t on private data Di

6: Compute update ∆M i
t = M i

t −Mt−1

7: Sign and submit transaction Txti =
(∆M i

t , Sigi,Metai) to blockchain
8: end for
9: Validate updates on-chain:

10: for each Txti do
11: Verify digital signature Sigi
12: Compute association score ρi = Sim(ϕ(Di), ϕglobal)
13: Accept ∆M i

t if ρi ≥ ρmin
14: end for
15: Aggregate accepted updates:

Mt ← Mt−1 +
1

|At|
∑
i∈At

∆M i
t

16: Broadcast new global model Mt to all clients
17: end for

∆M i
t ∈ At are aggregated to form the new global model using

federated averaging in Equation 3.

Mt+1 = Mt +
1

|At|
∑
i∈At

∆M i
t . (3)

This updated model Mt+1 is broadcast to all participants,
marking the end of the round. The process is repeated for
T rounds until the global model converges. Integration of
PureChain with PoA2 validation ensures secure participation,
data integrity, and reliable collaboration in vehicular edge
environments.

C. Federated Learning Training Process

The third layer of the architecture illustrates the
distributed training pipeline in a fleet of vehicles
(Vehicle 1, Vehicle 2, ..., Vehicle N). Each vehicle maintains
a local neural network model, private storage for sensor or
operational data, and the ability to download and synchronize
with the global model. In each communication round t,
the central aggregator initializes the global model Mt

by continuing from the results of the previous round in
Equation 4.

Mt ← Initialize() or Mt−1. (4)

Each vehicle i ∈ {1, 2, ..., N} receives Mt and trains a local
copy M i

t using its private data set Di for epochs E as in
Equation 5.

M i
t = Train(Mt, D

i, E). (5)

Upon completion, each client computes the update of the
model by subtracting the global model from the local model
trained in Equation 6.

∆M i
t = M i

t −Mt. (6)

This local update ∆M i
t is submitted to PureChain for tamper-

proof log-in and validation via smart contracts. PureChain
ensures the accuracy of the update and the identity of the
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contributor. Once all valid updates from the selected client
subset Ct are collected, the aggregator performs a weighted
averaging to refine the global model in Equation 7.

Mt+1 = Mt +
1

|Ct|
∑
i∈Ct

∆M i
t . (7)

This federated training cycle repeats for T communica-
tion rounds. With blockchain infrastructure providing crypto-
graphic guarantees, the framework ensures that model updates
are verifiable, auditable, and privacy-preserving, enabling se-
cure and decentralized learning within intelligent transporta-
tion systems.

Algorithm 2 summarizes the PureChain-FL process, which
integrates blockchain with federated model training to ensure
secure aggregation, tamper-proof logging, and decentralized
coordination between SD-ITS clients.

Algorithm 2 PureChain Federated Learning Process

1: Initialize global model M0

2: for each round t = 1, 2, ..., T do
3: Select subset of clients Ct from total clients N
4: for each client i ∈ Ct in parallel do
5: Train local model M i

t on local data Di

6: Generate update ∆M i
t = M i

t −Mt−1

7: Sign and submit ∆M i
t to blockchain smart contract

8: end for
9: Retrieve and verify updates ∆M i

t i = 1|Ct| from
blockchain

10: Aggregate updates: Mt ← Mt−1 +
1

|Ct|
∑

i ∆M i
t

11: Broadcast Mt to all clients
12: end for

IV. EXPERIMENTATION AND RESULT DISCUSSION

A. Dataset Description

This study uses three benchmark data sets: BurST-
ADMA [13], Veremi [14] and CICIoV2024 [15], to evaluate
the proposed PureChain-FL framework. These datasets were
selected for their relevance in simulating real-world vehicle
and IoT communication scenarios. The BurST-ADMA dataset
features industrial attack simulations and wireless traffic, while
the Veremi dataset captures vehicular misbehavior in V2X
communications. The CICIoV2024 dataset includes smart city
telemetry and threat activities. Each data set varies in size and
structure, allowing us to test the scalability and generalization
of the framework. All experiments were conducted using
Google Colab with Python 3.11.13, TensorFlow Federated, and
Matplotlib for visualization. The compute environment was
equipped with an Intel(R) Xeon (R) CPU @ 2.20HZ with 12.7
GB RAM running Windows 11. Blockchain operations were
simulated using a custom Python-based class, where encrypted
client data was appended as blocks during each round of
federated learning.

B. Performance Evaluation

The framework was evaluated across different configura-
tions of federated clients and training rounds. For each dataset,
experiments were conducted at 5, 10, and 20 clients across
10, 20, and 30 training rounds. Each client contributed fixed
local samples (e.g., 100 per round). The primary metric
was the cumulative number of training samples collected.
Figure 2(a) confirms that PureChain-FL scales efficiently with
increasing clients and rounds, ensuring effective data collec-
tion for dynamic ITS environments. Figure 2(b) shows the
system maintains low-latency inference, with a notable drop
at 30 rounds for 10 clients, suggesting model convergence or
optimized aggregation. Overall, PureChain-FL supports real-
time, decentralized, and scalable learning, making it well-
suited for intelligent transportation systems.

Fig. 2: Impact of sample collection on clients and rounds in
BurST-ADMA dataset.

Figure 3(a) demonstrates PureChain-FL’s efficient and scal-
able data collection using the CICIoV2024 dataset, with
no signs of performance degradation as clients and rounds
increase, supporting large-scale, decentralized ITS environ-
ments. Figure 3(b) confirms sustained minimal latency infer-
ence between 0.0014s and 0.0015s, with moderate overhead
at higher client counts (20), validating the system’s suitability
for real-time, safety-critical applications.

Fig. 3: Impact of sample collection on clients and rounds in
CICIoV2024 dataset.

Figure 4(a) confirms PureChain-FL’s scalability, with linear
sample growth across clients, eliminating aggregation bottle-
necks in the Veremi data scenario, which is ideal for dynamic
ITS. Figure 4(b) illustrates consistently low inference latency
(0.0022–0.0028s) across rounds and clients, supporting real-
time, safety-critical applications. The system maintains its per-
formance at scale, reflecting the robustness of its blockchain-
based, decentralized architecture. Overall, the results highlight
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the robustness and scalability of the blockchain-based FL
architecture for dynamic and distributed intelligent transporta-
tion systems.

Fig. 4: Impact of sample collection on clients and rounds in
Veremi dataset.

The results demonstrate that increasing client participation
boosts training sample volume, accelerating model conver-
gence, while more communication rounds enhance model ac-
curacy through abundant aggregation. These findings validate
the suitability of PureChain-FL for large-scale and resource-
constrained SD-ITS, affirming the effectiveness of blockchain-
integrated FL in building robust, trustworthy AI for intelligent
transportation systems.

TABLE I: Comparative Analysis of Blockchain-FL Frame-
works in ITS

Ref. Year FL Type Blockchain Security Scalability
[8] 2020 AV-FL ✓ ✓ ✗
[7] 2024 FL + IDS ✓ ✓ ✗

This Study 2025 PureChain-FL ✓ ✓ ✓

Table I summarizes previous Blockchain-FL frameworks in
ITS. Although earlier approaches focus on blockchain-enabled
security, they offer limited support for scalability. In contrast,
PureChain-FL integrates blockchain technology, enhances se-
curity, and enables scalable deployment in dynamic vehicular
environments.

V. CONCLUSIONS

The experimental results confirm the scalability and data
efficiency of the PureChain-based FL for SD-ITS. As client
numbers and training rounds increased, training samples scaled
linearly across BurST-ADMA, Veremi, and CICIoV2024
data scenarios, demonstrating improved data utilization with
broader participation. PureChain’s integration of blockchain
with FL provides transparency, decentralized trust, and re-
silience to central failures. The system maintained stable per-
formance and data growth despite fluctuating client availabil-
ity, crucial for vehicular edge settings. Consistent sample col-
lection across diverse traffic conditions highlights PureChain-
FL’s robustness to data heterogeneity and its applicability to
real-world ITS scenarios. The framework enables secure, ver-
ifiable, and privacy-preserving intelligence at the edge. Future
work will evaluate metrics such as accuracy, latency, and
communication cost, and investigate lightweight consensus,
automated smart contracts, and adaptive client sampling for
improved efficiency in constrained environments.
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