A Target-Aware Neural Network Inference Template
Code Generation Technique for the TANGO
Framework

Jaebok Park
On-Device Artificial Intelligence
Models Research Section

Kyunghee Lee
On-Device Artificial Intelligence
Models Research Section

Changsik Cho
On-Device Artificial Intelligence
Models Research Section

ETRI ETRI ETRI
Daejeon, Korea Daejeon, Korea Daejeon, Korea
parkjb@etri.re.kr kyunghee@etri.re.kr cscho@etri.re.k

Abstract—Artificial intelligence-based services consist of a
complex workflow that includes generating and optimizing
neural network models, creating application-specific template
code, and deploying the models on target devices. An integrated
and automated framework is needed to systematically handle
the entire pipeline. However, these processes demand a high
level of expertise and technical skill, posing a significant burden
for general developers. In particular, additional optimization is
necessary to enable neural network inference tailored to diverse
target environments. This paper proposes an automated method
that allows users to generate neural networks optimized for
selected target devices and application services, and to package
them into executable inference code for final deployment—
without requiring complex configuration. Specifically, the
proposed template code generation technique for neural
network inference is based on a predefined template skeleton.
This skeleton is designed with consideration for a wide range of
hardware accelerators, allowing for general applicability across
diverse environments. The proposed approach enables the
generation of final executable code with minimal modifications
by adapting to the computational resources and accelerator
characteristics of each target device.

Keywords— TANGO, AutoML, Deep, Framework, Template

[. INTRODUCTION

In recent years, the application of neural network—based
artificial intelligence technologies has been expanding across
various industrial sectors. However, the development of such
technologies still demands a high level of expertise. In
particular, small and medium-sized enterprises often struggle
to secure professionals capable of designing neural network
models and integrating them into application services for
deployment. For general software developers, managing the
entire process of neural network development and deployment
poses significant technical challenges. Therefore, there is a
growing demand for automated tools or supportive
frameworks that enable non-experts to easily develop and
deploy neural network-based application services [1].

The entire process from neural network model creation to
deployment is consisted of complex and repetitive tasks, and
manual approaches often face limitations in terms of
productivity and consistency. As a result, the need for MLOps
frameworks [2][3], which support automation and systematic
management of model development and operations, has
become increasingly prominent. MLOps facilitates practical
and scalable deployment of neural network—based systems by
supporting the full pipeline from rapid model development to
reliable deployment and continuous performance monitoring.

979-8-3315-5678-5/25/$31.00 ©2025 IEEE

939

This paper proposes a technique, implemented using the
TANGO framework developed by ETRI [4], for optimizing
and deploying neural networks according to the performance
characteristics of five distinct target devices. TANGO (Target
Aware No-code Neural Network Generation and Operation
Framework) is an MLOps system that enables the generation
and deployment of such target-specific neural networks
through a no-code approach.

TANGO first allows users to specify requirements through
a configuration wizard, where target devices and neural
network applications can be selected easily. Based on this
specification, a suitable neural network model is then
generated. The model generation process utilizes NNI [5]
along with TANGO’s recommendation system to
automatically produce neural networks optimized for the
selected target device and application service. The TANGO
recommendation system suggests optimal neural network
models for image classification and object detection tasks,
depending on the performance capabilities of the target device.
Target devices are categorized into performance tiers. For
image classification, the system recommends five models—
ResNet203, 152, 101, 50, and 34 [6]; for object detection, it
recommends six YOLOV9 models—T, S, M, C, and E [7].
Neural network model recommendation accumulates
experiential data as the number of training iterations increases.
By training the recommendation model on this data, it
becomes possible to implement a more efficient
recommendation algorithm.

Next, the generated neural network is converted into a
format compatible with the inference engine of the target
device, and optimizations such as quantization and pruning
are applied. The proposed template code generation method
defines a skeleton for neural network inference templates
based on nine essential code components. This method is
generalized to accommodate various inference engines used
across different target devices, thereby providing a
standardized approach for generating executable template
code.

This paper presents an automated template generation
method to support efficient neural network inference on
various target devices. The TANGO framework generates and
deploys both the optimized model and the corresponding
executable code to the target device, enabling rapid and
seamless deployment. The proposed method provides a
template generation technique in TANGO that automatically
searches, trains, optimizes, and deploys neural networks based
on the target device and application requirements.

ICTC 2025

II. NEURAL NETWORK INFERENCE TEMPLATE GENERATION
METHOD BASED ON THE TANGO

TANGO, developed by ETRI, allows non-expert users to
easily develop neural network—based applications with little
to no coding. It is designed as an automated framework for
neural network generation and deployment that supports
automatic distribution to target devices. TANGO can be
largely divided into neural network generation and
deployment. First, TANGO’s neural network generation
proceeds through the process of generating a neural network
by selecting basic requirements such as the target device and
tasks like Detection/Classification, as provided in Table 1.

TABLE L DEVICE ADAPTIVE NEURAL NETWORK MODEL
RECOMMENDATION

Target device Model recommendation
pC PC Server Yolov7 E6 Resnet]52
PC Yolov7 W6 Resnet152
Jetson AGX Orin Yolov7 W6 Resnet101
Jetson AGX Xavier Yolov7 X Resnet50
Davi Galaxy S22 Yolov7 Tiny Resnet}4
= Rasberry Pi5 Yolov7 Tiny Resnet34
Odroid N2 Yolov7 Tiny Resnet34
Odroid-M1 Yolov7 Tiny Resnet34

The end-to-end TANGO workspace automates the
machine learning pipeline, including data preprocessing,
model selection, hyperparameter tuning, and model
deployment. The neural network model generation process
begins by selecting a base model derived from State-of-the-
Art (SOTA) architectures. Next, Neural Architecture Search
(NAS) and Hyperparameter Optimization (HPO) techniques
are employed to automatically explore the optimal model
structure and configuration, followed by a retraining process.
As shown in Figure 1, TANGO automatically trains a neural
network according to the desired requirements by selecting a
suitable model optimized for the target device chosen by the
user.

Neiifal Network Generation and
Deployment Pipeline

N Y s e

Select your desired target

L2
m: E@e

i) o)

2

00

D i
“Training Process @@
CICDE
oo
- i

Fig. 1. A target selection and training process of TANGO

As shown in Figure 2, TANGO generates an executable
file specific to the target environment based on the user-
defined neural net info.yaml and deployment.yaml,

including the necessary libraries and pre/post-processing code.

Next, this is compressed or built as a container image and
installed and deployed to the device. TANGO deployment
supports the automatic generation of executable code,
environment optimization, accelerator support, inference
engine support, and deployment convenience.

940

Deployment

deployment.yaml|
Excutable
Container Image

neural_net_info
.yaml

Code Gen oud Target
for NN eployment

n-Device

* onnx/*.pt

Fig. 2. TANGO's distribution module configuration diagram

The template code generation technique fills in the
implementation of the detect function according to the YAML
configuration and the characteristics of the target device, as
illustrated in Figure 3. First, the acceleration environment for
the target device is initialized. Then, the neural network model
generated by the model generation module is loaded, and a
dataloader is configured to supply input images or videos for
inference. Next, input images are retrieved as a stream within
a for loop, and inference is performed on each image. Since
the inference code depends on the supported data types and
input dimensions of each target device, additional
modifications are required to generate device-specific
executable code. Non-Maximum Suppression (NMS) is
applied to eliminate redundant bounding boxes, retaining only
the one with the highest confidence score. Subsequently,
detection results are processed and bounding boxes are drawn
around the detected objects. The resulting images are then
output as a stream. TANGO’s template code generation
utilizes a basic template skeleton that is independent of
accelerator type. The final template code is produced by
selectively modifying only the portions required for each
target device.

def False
Set device (CPU/GPU/NPU/Adreno/TPU/Mali)

1: Set device

#Load model 23 Load model
load FP32 model

Set Dataloader 3: Set dataloader

for in 4: Load image
Inference

. 5: Inferecnce
with

#Apply Nms 6: Apply NMS

Process detections 1: Process detection
for i, in # detections per image

if # batch_size >= 1
.S, ,"%g: "
else
« 8, - ¢ , ‘frame’, 0
Write results
for

if

8: Process box
Add bbox to image
} {conf:.2f}

or
7

Stream results 9: Output
if

Fig. 3. A skeleton of TANGO template code

TANGO'’s deployment is evaluated on five types of target
devices, as illustrated in Figure 4. First, in the CPU-based
acceleration environment, an optimized neural network is
generated through quantization and pruning, taking into
account the constraints of CPU-only execution. Subsequently,

template code is generated to execute the optimized neural
network in accordance with the domain-specific service
requirements. In the GPU-based acceleration environment, a
neural network of appropriate size for Jetson ORIN is
quantized and further optimized through TensorRT
conversion. Additionally, template code is generated by
integrating TensorRT processing into the predefined skeleton.
The RKNN-based acceleration environment supports
Rockchip NPU acceleration on the Odroid-M1. To enable
neural network acceleration, the generated yoloE.pt model is
first converted to the ONNX format and then optimized into
the yoloE.rknn model through quantization and data type
conversion. The template code is automatically modified by
TANGO to incorporate RKNN processing logic. The TPU-
based acceleration environment supports Google TPU
acceleration on the Raspberry Pi. The neural network is
converted to ONNX format and subsequently transformed
into a TFLite model to support TPU-based execution. As with
RKNN, the TANGO deployment module automatically
updates the template code to include TPU-specific processing,
generating the final executable program. The smartphone
acceleration environment supports neural network execution
using the Adreno 730 of the Galaxy S22 and the Adreno 740
of the Galaxy S23. The PyTorch-based neural network
generated by TANGO is first converted to ONNX, then
transformed into an OpenVINO-compatible format, and
finally converted to a TFLite model to generate an Android-
compatible YOLOV7 application. The final executable code is
produced as an Android .apk package.

CPU Acceleration

yoloE.pt

GPU Acceleration

yoloE.pt
S e

pe

B e T ﬁ
. =
- \ .\&' Adreno Acceleration
RKNN Acceleration TPU Acceleration -
I yoloE.tflite |

I yoloE.rknn I I yolokE.tflite |
Fig. 4. Five target devices supported by TANGO

Adreno Acceleration

RKNN Acceleration
Fig. 5. Neural network execution screens for each device

TPU Acceleration

Figure 5 shows the execution screens of the final neural
networks and code running on each target device. In the CPU,

GPU, RKNN, and TPU acceleration environments, real-time
object recognition from video input is successfully
demonstrated. On the smartphone, object recognition is
performed directly through the live camera feed. These results
demonstrate that TANGO automatically generates neural
networks and execution code optimized for each of the five
target devices.

III. CONCLUSION

This paper presents techniques for automatically
generating neural networks and neural network application
templates according to the target device. The proposed
template code generation provides a template skeleton that can
automatically generate inference code based on the
characteristics of various target device accelerators using the
generated neural network. Through this, developers with
limited expertise in neural networks can utilize the neural
network auto-generation function and the integrated
development environment to develop Al services across
various domains. As a result, it is expected that the base of
neural network developers will expand, and the application
scope of neural networks will broaden.

In the future, this research will be extended to technologies
that automate application template code based on generative
Al particularly large language models (LLMs). Through this,
LLMOps-based technologies will be developed to efficiently
build generative Al application services. Ultimately, the goal
is to develop general-purpose intelligent services that can be
easily applied to various industrial fields, such as maritime,
agriculture, and healthcare.

ACKNOWLEDGMENT

This work was supported by Institute of Information &
communications Technology Planning & Evaluation (IITP)
grant funded by the Korea government(MSIT) (No. 2021-0-
00766, Development of Integrated Development Framework
that supports Automatic Neural Network Generation and
Deployment optimized for Runtime Environment and No. RS-
2024-00397615, Development of an automotive software
platform for Software-Defined-Vehicle (SDV) integrated with
an Al framework required for intelligent vehicles)

REFERENCES

[11 Google, “Google AutoML Beta,” 2020. [Online]. Available:
https://cloud. google.com/automl/, Accessed on: Jan. 24, 2020.

[2] Singh, K., Goswami, A., and Kukreja, S., “A Review on Interplay of
AutoML and MLOps “AutoMLOps”: Current State, Challenges, and
Future Scope.” Proc. - International Conference on Computing and
Communication Networks (pp. 101-115). Springer, 2025.

[3] Alexander T., Difan D., Theresa E., Joseph G., Aditya M., Tim R.,
Sarah S., Daphne T., Tanja T., Henning W., and Marius L., “AutoML
in the Age of Large Language Models: Current Challenges, Future
Opportunities and Risks”. arXiv preprint arXiv:2306.08107, 2024.

[4] TANGO Project, https://github.com/ML-TANGO/TAN GO

[S] NNI(Neural Network Intelligence), https://github.com/microsoft/nni,
Accessed in May, 2022.

[6] Kaiming H., Xiangyu Z., Shaoging R., and Jian S., “Deep Residual
Learning for Image Recognition”. arXiv preprint arXiv:1512.03385,
2015.

[71 Yolov9 Github, https://github.com/WongKinYiu/yolov9, Accessed in
February, 2024.

