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Abstract—Artificial intelligence-based services consist of a 
complex workflow that includes generating and optimizing 
neural network models, creating application-specific template 
code, and deploying the models on target devices. An integrated 
and automated framework is needed to systematically handle 
the entire pipeline. However, these processes demand a high 
level of expertise and technical skill, posing a significant burden 
for general developers. In particular, additional optimization is 
necessary to enable neural network inference tailored to diverse 
target environments. This paper proposes an automated method 
that allows users to generate neural networks optimized for 
selected target devices and application services, and to package 
them into executable inference code for final deployment—
without requiring complex configuration. Specifically, the 
proposed template code generation technique for neural 
network inference is based on a predefined template skeleton. 
This skeleton is designed with consideration for a wide range of 
hardware accelerators, allowing for general applicability across 
diverse environments. The proposed approach enables the 
generation of final executable code with minimal modifications 
by adapting to the computational resources and accelerator 
characteristics of each target device. 
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I. INTRODUCTION 
In recent years, the application of neural network–based 

artificial intelligence technologies has been expanding across 
various industrial sectors. However, the development of such 
technologies still demands a high level of expertise. In 
particular, small and medium-sized enterprises often struggle 
to secure professionals capable of designing neural network 
models and integrating them into application services for 
deployment. For general software developers, managing the 
entire process of neural network development and deployment 
poses significant technical challenges. Therefore, there is a 
growing demand for automated tools or supportive 
frameworks that enable non-experts to easily develop and 
deploy neural network-based application services [1]. 

The entire process from neural network model creation to 
deployment is consisted of complex and repetitive tasks, and 
manual approaches often face limitations in terms of 
productivity and consistency. As a result, the need for MLOps 
frameworks [2][3], which support automation and systematic 
management of model development and operations, has 
become increasingly prominent. MLOps facilitates practical 
and scalable deployment of neural network–based systems by 
supporting the full pipeline from rapid model development to 
reliable deployment and continuous performance monitoring. 

This paper proposes a technique, implemented using the 
TANGO framework developed by ETRI [4], for optimizing 
and deploying neural networks according to the performance 
characteristics of five distinct target devices. TANGO (Target 
Aware No-code Neural Network Generation and Operation 
Framework) is an MLOps system that enables the generation 
and deployment of such target-specific neural networks 
through a no-code approach. 

TANGO first allows users to specify requirements through 
a configuration wizard, where target devices and neural 
network applications can be selected easily. Based on this 
specification, a suitable neural network model is then 
generated. The model generation process utilizes NNI [5] 
along with TANGO’s recommendation system to 
automatically produce neural networks optimized for the 
selected target device and application service. The TANGO 
recommendation system suggests optimal neural network 
models for image classification and object detection tasks, 
depending on the performance capabilities of the target device. 
Target devices are categorized into performance tiers. For 
image classification, the system recommends five models—
ResNet203, 152, 101, 50, and 34 [6]; for object detection, it 
recommends six YOLOv9 models—T, S, M, C, and E [7]. 
Neural network model recommendation accumulates 
experiential data as the number of training iterations increases. 
By training the recommendation model on this data, it 
becomes possible to implement a more efficient 
recommendation algorithm. 

Next, the generated neural network is converted into a 
format compatible with the inference engine of the target 
device, and optimizations such as quantization and pruning 
are applied. The proposed template code generation method 
defines a skeleton for neural network inference templates 
based on nine essential code components. This method is 
generalized to accommodate various inference engines used 
across different target devices, thereby providing a 
standardized approach for generating executable template 
code.  

This paper presents an automated template generation 
method to support efficient neural network inference on 
various target devices. The TANGO framework generates and 
deploys both the optimized model and the corresponding 
executable code to the target device, enabling rapid and 
seamless deployment. The proposed method provides a 
template generation technique in TANGO that automatically 
searches, trains, optimizes, and deploys neural networks based 
on the target device and application requirements. 
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II. NEURAL NETWORK INFERENCE TEMPLATE GENERATION 
METHOD BASED ON THE TANGO  

TANGO, developed by ETRI, allows non-expert users  to 
easily develop neural network–based applications with little 
to no coding. It is designed as an automated framework for 
neural network generation and deployment that supports 
automatic distribution to target devices. TANGO can be 
largely divided into neural network generation and 
deployment. First, TANGO’s neural network generation 
proceeds through the process of generating a neural network 
by selecting basic requirements such as the target device and 
tasks like Detection/Classification, as provided in Table 1. 

TABLE I.  DEVICE ADAPTIVE NEURAL NETWORK MODEL 
RECOMMENDATION 

Target device Model recommendation 

grade detail spec. Obect detection Image Classifcation 

PC PC_Server Yolov7_E6 Resnet152 
PC Yolov7_W6 Resnet152 

On Device 

Jetson AGX Orin Yolov7_W6 Resnet101 
Jetson AGX Xavier Yolov7_X Resnet50 
Galaxy S22 Yolov7_Tiny Resnet34 
Rasberry Pi5 Yolov7_Tiny Resnet34 
Odroid-N2 Yolov7_Tiny Resnet34 
Odroid-M1 Yolov7_Tiny Resnet34 

 
The end-to-end TANGO workspace automates the 

machine learning pipeline, including data preprocessing, 
model selection, hyperparameter tuning, and model 
deployment. The neural network model generation process 
begins by selecting a base model derived from State-of-the-
Art (SOTA) architectures. Next, Neural Architecture Search 
(NAS) and Hyperparameter Optimization (HPO) techniques 
are employed to automatically explore the optimal model 
structure and configuration, followed by a retraining process. 
As shown in Figure 1, TANGO automatically trains a neural 
network according to the desired requirements by selecting a 
suitable model optimized for the target device chosen by the 
user. 

 

 
Fig. 1. A target selection and training process of TANGO 

 
As shown in Figure 2, TANGO generates an executable 

file specific to the target environment based on the user-
defined neural_net_info.yaml and deployment.yaml, 
including the necessary libraries and pre/post-processing code. 
Next, this is compressed or built as a container image and 
installed and deployed to the device. TANGO deployment 
supports the automatic generation of executable code, 
environment optimization, accelerator support, inference 
engine support, and deployment convenience. 

 
Fig. 2. TANGO's distribution module configuration diagram 
 

The template code generation technique fills in the 
implementation of the detect function according to the YAML 
configuration and the characteristics of the target device, as 
illustrated in Figure 3. First, the acceleration environment for 
the target device is initialized. Then, the neural network model 
generated by the model generation module is loaded, and a 
dataloader is configured to supply input images or videos for 
inference. Next, input images are retrieved as a stream within 
a for loop, and inference is performed on each image. Since 
the inference code depends on the supported data types and 
input dimensions of each target device, additional 
modifications are required to generate device-specific 
executable code. Non-Maximum Suppression (NMS) is 
applied to eliminate redundant bounding boxes, retaining only 
the one with the highest confidence score. Subsequently, 
detection results are processed and bounding boxes are drawn 
around the detected objects. The resulting images are then 
output as a stream. TANGO’s template code generation 
utilizes a basic template skeleton that is independent of 
accelerator type. The final template code is produced by 
selectively modifying only the portions required for each 
target device. 

 

 
Fig. 3. A skeleton of TANGO template code 

TANGO’s deployment is evaluated on five types of target 
devices, as illustrated in Figure 4. First, in the CPU-based 
acceleration environment, an optimized neural network is 
generated through quantization and pruning, taking into 
account the constraints of CPU-only execution. Subsequently, 
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template code is generated to execute the optimized neural 
network in accordance with the domain-specific service 
requirements. In the GPU-based acceleration environment, a 
neural network of appropriate size for Jetson ORIN is 
quantized and further optimized through TensorRT 
conversion. Additionally, template code is generated by 
integrating TensorRT processing into the predefined skeleton. 
The RKNN-based acceleration environment supports 
Rockchip NPU acceleration on the Odroid-M1. To enable 
neural network acceleration, the generated yoloE.pt model is 
first converted to the ONNX format and then optimized into 
the yoloE.rknn model through quantization and data type 
conversion. The template code is automatically modified by 
TANGO to incorporate RKNN processing logic. The TPU-
based acceleration environment supports Google TPU 
acceleration on the Raspberry Pi. The neural network is 
converted to ONNX format and subsequently transformed 
into a TFLite model to support TPU-based execution. As with 
RKNN, the TANGO deployment module automatically 
updates the template code to include TPU-specific processing, 
generating the final executable program. The smartphone 
acceleration environment supports neural network execution 
using the Adreno 730 of the Galaxy S22 and the Adreno 740 
of the Galaxy S23. The PyTorch-based neural network 
generated by TANGO is first converted to ONNX, then 
transformed into an OpenVINO-compatible format, and 
finally converted to a TFLite model to generate an Android-
compatible YOLOv7 application. The final executable code is 
produced as an Android .apk package. 

 
Fig. 4. Five target devices supported by TANGO 

 

 
Fig. 5. Neural network execution screens for each device 

Figure 5 shows the execution screens of the final neural 
networks and code running on each target device. In the CPU, 

GPU, RKNN, and TPU acceleration environments, real-time 
object recognition from video input is successfully 
demonstrated. On the smartphone, object recognition is 
performed directly through the live camera feed. These results 
demonstrate that TANGO automatically generates neural 
networks and execution code optimized for each of the five 
target devices. 

III. CONCLUSION 
This paper presents techniques for automatically 

generating neural networks and neural network application 
templates according to the target device. The proposed 
template code generation provides a template skeleton that can 
automatically generate inference code based on the 
characteristics of various target device accelerators using the 
generated neural network. Through this, developers with 
limited expertise in neural networks can utilize the neural 
network auto-generation function and the integrated 
development environment to develop AI services across 
various domains. As a result, it is expected that the base of 
neural network developers will expand, and the application 
scope of neural networks will broaden. 

In the future, this research will be extended to technologies 
that automate application template code based on generative 
AI, particularly large language models (LLMs). Through this, 
LLMOps-based technologies will be developed to efficiently 
build generative AI application services. Ultimately, the goal 
is to develop general-purpose intelligent services that can be 
easily applied to various industrial fields, such as maritime, 
agriculture, and healthcare.  
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