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Abstract—This  study comparatively analyzes the
performance of the traditional MUSIC algorithm and the deep
learning-based CNN for direction finding, particularly for
multiple HF band signals. Simulations in environments
characterized by complex noise, and additionally by frequency
variations and multipath effects, reveal that MUSIC's RMSE
significantly increases under low SNR conditions, whereas CNN
consistently exhibits lower errors. Furthermore, while MUSIC's
RMSE rises with increasing separation angles of the input
signals, CNN maintains stable performance. These findings
indicate that CNN overcomes grid-based resolution limitations,
achieving optimal estimation performance by closely
approaching the CRLB under diverse conditions.
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[. INTRODUCTION

The High-Frequency (HF, 3-30MHz) band is crucial for
various  wireless  services, including international
communications, military operations, aeronautical and
maritime links, shortwave broadcasting, and amateur radio.
Consequently, robust direction finding in the HF band is
essential for rapid detection and identification of interfering
signals. The Multiple-Signal Classification (MUSIC)
algorithm is widely used for its high resolution and accuracy
in direction-of-arrival (DOA) estimation. However, its
performance can degrade in complex real-world environments
due to various factors such as array imperfections, mutual
coupling, phase and amplitude errors. To overcome these
limitations, deep learning-based direction finding techniques
warrant consideration. This study conducts a comparative
analysis of the direction-finding performance of the MUSIC
algorithm and a learning-based technique using Convolutional
Neural Network (CNN) in multi-signal HF scenarios.

II. SIMULATION ENVIRONMENT SETUP

A. Antenna Array and Signal Model

Two independent signal sources are assumed at a center
frequency of 15 MHz within the HF band. The receiver
utilizes a 12-element Uniform Linear Array (ULA) with A/2
spacing. The two source signals have arbitrary DOAs, with a
separation angle ranging from 5° to 40°. The received signal
from each experiment is collected over 5,000 snapshots, and
is then mathematically modeled as follows:
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where K is the number of signal sources, M, is the number of
propagation paths for the k -th signal source, ay ,, is the
complex gain of the m-th path associated with the k-th source,
Ok,m is the angle of arrival, a(8,,,) denotes the steering
vector corresponding to 8y, ,, S, (1) is the transmitted signal
at time n, Af}, is the frequency offset, Ts is the sampling
period, Ty ,, is the relative time delay, and N is the number of
snapshots (n=1,2,...,N ). Finally, w(n) denotes the
complex Gaussian noise vector at time n.

The covariance matrix R is used identically for both
MUSIC and CNN methods, defined as:

N
R= %;x(n) xH(n)

B. Direction Finding Algorithm

The MUSIC algorithm performs an eigen-decomposition
of the covariance matrix R to separate the signal and noise
subspaces. It then exploits the orthogonality between the noise
subspace and the array steering vectors to locate high-
resolution DOA peaks. For performance analysis, a grid with
0.1° spacing is constructed in the range of -90° to 90°, and
spatial smoothing technique is applied to the traditional
MUSIC algorithm to mitigate the coherent signal problem.

The CNN directly predicts DOA by transforming the
antenna array signal covariance matrix R into a 2-channel
image (real and imaginary parts). This image is processed
through convolution, batch normalization and rectified linear
unit blocks to extract spatial correlations, with the resulting
feature vector fed into a fully connected layer for regression
output. The network is trained using a dataset of simulated
covariance samples generated by combining various signal to
noise ratio (SNR) levels, separation angles, and random
arrival angles.

C. Analysis Method

The performance of MUSIC and CNN is analyzed using
the following methods under two environments: one with a
complex Gaussian noise, and a second environment that
includes an additional frequency offset and multipath
propagation paths.

The RMSE of MUSIC and CNN is examined by fixing
the separation angle at 10° and varying the SNR from
-10 dB to 20 dB in 2 dB increments.

The RMSE of MUSIC and CNN is examined by
maintaining the SNR at 10 dB and varying the
separation angle from 5° to 40° in 5° increments.

To ensure statistical reliability, 1000 Monte Carlo
iterations are performed. Additionally, The Cramer-Rao
Lower Bound (CRLB), representing the theoretical
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(b) Under additional frequency offset and multipath propagation
Fig. 1. Performance of MUSIC and CNN with varying SNR

performance limit of direction is presented to evaluate the gap
from the lower performance bound.

III. DIRECTION FINDING PERFORMANCE ANALYSIS

Figure 1 shows RMSE results as a function of SNR with
fixed separation angle of 10°. The performance in complex
Gaussian noise environment is shown in Fig. 1(a). The
MUSIC algorithm exhibits high RMSE exceeding 2° in the
low SNR range of -10 to 0 dB, however, its performance
markedly improves beyond 5dB SNR, converging to
approximately 0.2°. In contrast, the CNN consistently
achieves low RMSE values below 1° even at -10dB and
maintains stable performance below 0.3° for SNRs above
0 dB. Notably, for SNRs greater than 0 dB, the CNN's RMSE
closely approaches the CRLB, maintaining errors under 0.1°.
The results under an environment with additional 1%
frequency offset and two multipath propagation paths are
shown in Fig. 1(b). The MUSIC algorithm exhibits high
RMSE at low SNRs, but its accuracy improves as SNR
increases, converging to around 3° at high SNR. In contrast,
the CNN consistently maintains low RMSE below 1° across
the entire SNR range, closely tracking the CRLB, especially
at higher SNRs. This demonstrates the superior robustness of
the CNN method to noise, particularly in challenging low
SNR conditions.

Figure 2 illustrates the RMSE as a function of separation
angle at a fixed SNR of 10dB. In a complex Gaussian noise
environment, as shown in Fig. 2(a), both MUSIC and CNN
methods achieve RMSE values below 0.3° for small
separation angles from 5° to 15°. The CNN, in particular,
demonstrates stable results around 0.1° to 0.2°, closely
agreeing with the CRLB. However, as the separation angle
increases beyond 20°, the RMSE of MUSIC rises rapidly,
exceeding 3.5° at 40°. This degradation is attributed to
increased off-grid errors and reduced peak localization
accuracy, primarily caused by grid resolution limitations and
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(b) Under additional frequency offset and multipath propagation
Fig. 2. Performance of MUSIC and CNN with varying separation angle

spectral leakage as the separation angle widens. The results
under the environment with additional 1% frequency offset
and two multipath propagation paths is shown in Fig. 2(b).
The RMSE of MUSIC algorithm increases rapidly with larger
separation angles, exceeding 15° at a separation of 40°,
indicating significant performance degradation. In contrast,
the CNN consistently achieves RMSE values under 1°,
remaining near the theoretical CRLB across all tested
separations. These results highlight the CNN estimator’s
strong ability to maintain high accuracy and robustness
regardless of source separation.

IV. CONCLUSION

In this study, the direction finding performance of MUSIC
and CNN in the HF band was analyzed. The MUSIC
algorithm approached the CRLB only in high SNR and small
separation angle regions. However, at low SNR or with
increasing separation angles, its RMSE sharply increased. In
contrast, the deep learning-based method using CNN
addressed physical and numerical limitations through training
under various SNR and separation angle conditions,
maintaining stable and superior estimation accuracy close to
the CRLB across all simulated scenarios. This confirms the
practicality of a deep learning-based approach for HF
direction finding, demonstrating consistent performance even
in low SNR and wide separation angle environments.
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