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Abstract—This paper provides a survey and comparative 
analysis of three key VLA-based robot policies from Physical 
Intelligence: π₀, π₀-FAST, and π₀.₅. π₀ introduced a foundation 
model for robot manipulation that couples a pre-trained vision-
language backbone with a diffusion-based action policy. 
Building on π₀, the π₀-FAST model incorporated a novel 
Frequency-space Action Sequence Tokenization (FAST) scheme, 
enabling up to five times faster training while matching the 
performance of diffusion models. The latest model, π₀.₅, extends 
π₀’s architecture with co-training on diverse data sources and a 
hierarchical policy structure to achieve real-world 
generalization demonstrating, for the first time, successful 
robotic manipulation in entirely new unseen environments. 

Keywords—Vision-language-action model, Physical AI, Robot 
foundation model. 

I. INTRODUCTION  
Recent advances in large language models and vision–

language models have strengthened instruction following, 
long-horizon reasoning, and grounded visual perception [1]-
[3]. Building on this progress, artificial intelligence models for 
general-purpose robotic control have emerged as a promising 
approach [4][5]. By leveraging large-scale pre-trained vision–
language representations and coupling them with robot-
specific action policies, such systems aim to enable robots to 
understand natural instructions and perform complex physical 
tasks in diverse environments. 

 A representative example of this paradigm is the π₀ model, 
which demonstrated that a unified policy could perform a wide 
variety of dexterous tasks from folding laundry to organizing 
drawers across different robot embodiments using a flow-
matching diffusion-based action generator [6]. Building on π₀, 
π₀-FAST model introduced a discrete action representation 
using Frequency-space Action Sequence Tokenization 
(FAST), enabling approximately five times faster training 
without compromising performance [7]. More recently, π₀.₅ 
extended the architecture through heterogeneous multi-modal 
co-training and a hierarchical control strategy, achieving real-
world generalization to novel environments unseen during 
training [8]. 

II. VISION-LANGUAGE-ACTION POLICIES 
VLA models define a unified policy framework that jointly 

maps high-dimensional visual observations and natural 
language goals to executable low-level actions. This 

formulation enables end-to-end learning of instruction-
conditioned control across diverse robotic tasks. 

In general, a VLA model is formulated to learn a policy as 

(:|:, )                                  (1) 

that generates a sequence of actions :  conditioned on a 
stream of observations : and an input instruction , where 
: are low-level robot actions, : are raw observations, and 
 is a high-level task specification typically given as natural 
language.  

In practice, VLA policies are implemented using causal  
sequence models as transformers that encode the instruction  
and the visual context : into a shared latent representation. 
The action sequence :  is then predicted either: 
• Autoregressively, as in tokenized models like π₀-FAST: 

(|::, )                               (2) 

• Via flow-matching or diffusion, as in continuous policies 
like π₀ and π₀.₅: 

(:|:)                                     (3) 

where  = (, ) is a latent representation. 

This formulation allows VLA policies to combine temporal 
perception, semantic understanding, and physical control 
within a single architecture. Depending on the model, the 
action head may operate in discrete token space or continuous 
control space. 

III. TRAINING DATASET 
The training data underlying the Pi model series 

significantly affects the scalability, generalization, and task 
versatility of each policy. All three models, π₀, π₀-FAST, and 
π₀.₅, were trained on large-scale robot demonstration datasets 
collected across multiple embodiments, environments, and 
task categories [6]-[8]. 

The π₀ model was trained on approximately 10,000 hours 
of robot data, drawn from eight different robot embodiments 
and over 60 distinct tasks, including manipulation, cleaning, 
and assembly activities [6]. These demonstrations came from 
a mix of scripted behaviors and human teleoperation, enabling 
the model to generalize across physical forms and skill types. 

The π₀-FAST model retained a similar dataset scope, but 
transformed the demonstration trajectories using the FAST 
tokenization scheme, which compresses continuous action 
sequences into discrete representations [7]. This formulation 
enabled efficient next-token prediction training using standard 
autoregressive transformers. 

This work was supported by Electronics and Telecommunications 
Research Institute (ETRI) grant funded by the Korean government. 
[25ZR1100, A Study of Hyper-Connected Thinking Internet Technology by 
autonomous connecting, controlling, and evolving ways]. 

1037979-8-3315-5678-5/25/$31.00 ©2025 IEEE ICTC 2025



 

 

Table I. Comparison of π₀, π₀-FAST, and π₀.₅ models. 

Architecture Training Strategy Key Results Key Contributions 

π₀: Pre-trained VLM backbone with 
flow-matching action policy [6] 

Multi-task training on ~10k hours 
from 8 robots (various embodiments), 
web data [6] 

Generalist policy performs diverse 
dexterous tasks (e.g., folding 
laundry, assembling boxes) via 
prompting or fine-tuning [6] 
 

Introduced VLA foundation model 
concept; demonstrated cross-
embodiment skill transfer [6] 

π₀-FAST: Autoregressive Transformer 
policy with FAST action tokenization 
[7] 
 

Next-token prediction on DCT-
compressed action sequences; scaled 
to 10k hour dataset [7] 

Matched performance of diffusion-
based policy while training is 5× 
faster on dexterous tasks [7] 

Proposed FAST tokenization enabled 
efficient large-scale VLA training [7] 

π₀.₅: Hybrid hierarchical policy (high-
level subtask prediction, continuous 
low-level controller) [8] 

Co-training on heterogeneous data 
(multi-robot, simulation, web, human 
instructions); fine-tuned on ~400h 
real home robot data [8] 

A VLA to generalize to unseen 
environments (cleaning new 
homes) with ~94% success; 
approaches in-domain model 
performance [8] 

Demonstrated open-world 
generalization via multi-modal co-
training; integrated planning and 
control in one model [8] 

The π₀.₅ model extended this foundation by introducing a 
co-training strategy across a heterogeneous mix of robot 
platforms and real-world environments [8]. Although the 
paper does not enumerate individual data types, it emphasizes 
that π₀.₅ was trained on a broader distribution including long-
horizon tasks in unseen home environments and that its 
learning process integrated diverse sources of behavior 
supervision. Fine-tuning was performed on real-world data 
collected in domestic scenes, enabling π₀.₅ to generalize more 
effectively to natural household contexts. 

IV. COMPARATIVE OVERVIEW OF THE PI MODEL SERIES 
The Pi model series represents a structured progression in 

the development of VLA policies, targeting improvements in 
efficiency and generalization. Table I summarizes the 
architectural differences, training methods, empirical 
performance, and core innovations introduced in each model: 
π₀, π₀-FAST, and π₀.₅. 

The π₀ model established a foundation for generalist robot 
control by integrating a pre-trained vision-language backbone 
with a continuous action policy trained via flow matching. It 
demonstrated that large-scale multi-task behavior cloning 
across various robot embodiments could yield a unified policy 
capable of handling manipulation tasks via language prompts 
or fine-tuned commands. 

To address the computational demands of diffusion-based 
learning, π₀-FAST introduced a discrete action representation 
using frequency-space action sequence tokenization. This 
allowed the model to shift from continuous action regression 
to next-token prediction, enabling significantly faster training 
while preserving the high success rates of the π₀ baseline. 

Expanding beyond in-distribution performance, π₀.₅ 
employed a hierarchical architecture with co-training on 
diverse data sources—ranging from robot demonstrations and 
web-scale vision-language. By decoupling high-level 
reasoning from low-level control, and insulating pre-trained 
knowledge during motor learning, π₀.₅ achieved strong 
generalization to novel environments such as unseen homes, 
marking a new milestone in the Pi series. 

Overall, this series reflects a systematic enhancement of 
both model capability and learning efficiency, evolving from 
strong in-domain competence to robust real-world 
applicability. 

V. PERFROMANCE COMPARISONS 
This section presents a performance comparison of the π₀, 

π₀-FAST, and π₀.₅ models, focusing on their training 
efficiency and final task success rates across household 
manipulation benchmarks. 

A. Training Efficiency 
Figure 1 represents the relative training time required for 

each model to reach a remarkable success rate on 
manipulation tasks [7]. This comparison highlights the 
impact of different policy architectures and training strategies 
on sample efficiency. As shown in Fig. 1, π₀-FAST reaches a 
remarkable success rate in roughly 20% of the training time 
required by π₀, owing to the FAST tokenization scheme. By 
representing actions as discrete tokens, π₀-FAST can leverage 
efficient sequence learning. π₀.₅ also benefits from FAST 
during its pre-training phase achieving comparable sample 
efficiency to π₀-FAST although its post-training phase 
employs the slower flow-matching controller. The π₀.₅ 
leverages the efficiency of FAST during its pre-training phase, 
which enables it to achieve sample efficiency comparable to 
π₀-FAST. However, a key distinction lies in the post-training 
stage, where π₀.₅ employs a slower flow-matching controller 
[8]. Consequently, it is inferred that the overall training time 
for π₀.₅ would be longer than that for π₀-FAST, which utilizes 
the FAST tokenization method throughout its entire training 
pipeline. 

 
Fig. 1. Relative training time to reach 0.8 success rate for π₀, π₀-FAST, and 
π₀.₅. π₀-FAST trains about 5× faster than π₀ to achieve the same performance 
level, while π₀.₅ attains similar efficiency. 
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B. Task Performance 
Figure 2 represents a comparison of the task success rates 

for different models, evaluating their ability to successfully 
execute language-guided tasks within two distinct kitchen 
environments [8]. The task success rate metric evaluates a 
robot's ability to successfully place the target object in the 
specified location. As shown in Fig. 2, the π₀.₅ achieved a 
slightly higher success rate than the π₀-FAST and a 
significantly higher rate than the π₀. This result highlights the 
critical importance of discrete token training for robust 
language following and task completion. Furthermore, the 
experiments with out-of-distribution objects, which were not 
included in the training set, provide a deeper insight into the 
models' generalization capabilities. The ability to successfully 
handle novel household items demonstrates that the approach 
can generalize to previously unseen objects, a key requirement 
for real-world robotic applications. Overall, the evolution 
from π₀ to π₀-FAST to π₀.₅ shows a trend of maintaining or 
improving task success while greatly reducing training time 
and expanding generalization. 

 
Fig. 2. Comparisons of task success rates for π₀, π₀-FAST, and π₀.₅. π₀.₅ 
achieves the highest task success rate, with π₀-FAST outperforming π₀. 

VI. CONCLUSION AND OPEN CHALLENGES 
This paper presented a comparative survey of the π₀, π₀-

FAST, and π₀.₅ models within the Physical Intelligence 
framework. Through architectural and empirical analysis, we 
demonstrated how these models collectively advance the field 
of general-purpose robot control. 

The π₀ model introduced the concept of a vision-language-
action  foundation policy, capable of performing a wide range 
of dexterous tasks across different embodiments via 
prompting or fine-tuning. π₀-FAST improved upon this 
baseline with a novel discrete tokenization of continuous 
actions, enabling up to fivefold training efficiency without 
compromising success rates. π₀.₅ further extended the 
framework by introducing hierarchical planning and co-
training across heterogeneous robot and environment data, 
achieving strong performance even in previously unseen 
environments. 

Despite these achievements, several open challenges 
remain. First, π₀.₅—while exhibiting robust generalization—
still struggles with certain physical and perceptual limitations, 
such as unfamiliar hardware (e.g., novel drawer handles), 
occlusions in visual input, and inconsistent high-level subtask 
inference. Second, current co-training approaches, though 
effective, leave room for improvement in balancing diverse 
data modalities and increasing the complexity of learned 
behaviors. 

Future work may focus on: 

• Improving performance in partially observable 
environments through better memory and long-term 
context modeling. 

• Enhancing prompt comprehension by incorporating 
more sophisticated and richly annotated instruction 
data. 

• Expanding the training regime with larger-scale and 
more varied datasets, including real-world household 
interactions. 

• Exploring new supervision modalities such as verbal 
instruction, enabling more natural human-robot 
interaction. 

• Developing more adaptive planning architectures 
capable of operating across highly dynamic and 
ambiguous real-world scenarios. 

In summary, the π-series models have made significant 
progress toward generalist robot intelligence, offering 
scalable architectures, efficient learning methods, and real-
world applicability. Addressing the remaining limitations will 
be essential in achieving the next milestone—robots that can 
robustly learn, reason, and act across truly open-ended 
environments. 
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