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Abstract—This paper provides a survey and comparative
analysis of three key VLA-based robot policies from Physical
Intelligence: o, m-FAST, and mo.s. 7o introduced a foundation
model for robot manipulation that couples a pre-trained vision-
language backbone with a diffusion-based action policy.
Building on m, the m-FAST model incorporated a novel
Frequency-space Action Sequence Tokenization (FAST) scheme,
enabling up to five times faster training while matching the
performance of diffusion models. The latest model, 7.5, extends
mo’s architecture with co-training on diverse data sources and a
hierarchical policy structure to achieve real-world
generalization demonstrating, for the first time, successful
robotic manipulation in entirely new unseen environments.

Keywords—Vision-language-action model, Physical AI, Robot
foundation model.

I. INTRODUCTION

Recent advances in large language models and vision—
language models have strengthened instruction following,
long-horizon reasoning, and grounded visual perception [1]-
[3]. Building on this progress, artificial intelligence models for
general-purpose robotic control have emerged as a promising
approach [4][5]. By leveraging large-scale pre-trained vision—
language representations and coupling them with robot-
specific action policies, such systems aim to enable robots to
understand natural instructions and perform complex physical
tasks in diverse environments.

A representative example of this paradigm is the mo model,
which demonstrated that a unified policy could perform a wide
variety of dexterous tasks from folding laundry to organizing
drawers across different robot embodiments using a flow-
matching diffusion-based action generator [6]. Building on 7o,
mo-FAST model introduced a discrete action representation
using Frequency-space Action Sequence Tokenization
(FAST), enabling approximately five times faster training
without compromising performance [7]. More recently, mo.s
extended the architecture through heterogeneous multi-modal
co-training and a hierarchical control strategy, achieving real-
world generalization to novel environments unseen during
training [8].

II. VISION-LANGUAGE-ACTION POLICIES

VLA models define a unified policy framework that jointly
maps high-dimensional visual observations and natural
language goals to executable low-level actions. This
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formulation enables end-to-end learning of instruction-
conditioned control across diverse robotic tasks.

In general, a VLA model is formulated to learn a policy as

T[(al:tlolzt' x) (1)

that generates a sequence of actions a,.; conditioned on a
stream of observations 0,., and an input instruction x, where
a,.; are low-level robot actions, o,.; are raw observations, and
x is a high-level task specification typically given as natural
language.

In practice, VLA policies are implemented using causal
sequence models as transformers that encode the instruction x
and the visual context 0.7 into a shared latent representation.
The action sequence aq.ris then predicted either:
* Autoregressively, as in tokenized models like mo-FAST:

T(a¢|Ay:6-101:6, %) 2

* Via flow-matching or diffusion, as in continuous policies
like 7o and To.s:

T[(al:tlzl:t) (3)
where z, = f (o, x) is a latent representation.

This formulation allows VLA policies to combine temporal
perception, semantic understanding, and physical control
within a single architecture. Depending on the model, the
action head may operate in discrete token space or continuous
control space.

III. TRAINING DATASET

The training data underlying the Pi model series
significantly affects the scalability, generalization, and task
versatility of each policy. All three models, mo, mo-FAST, and
To.s, were trained on large-scale robot demonstration datasets
collected across multiple embodiments, environments, and
task categories [6]-[8].

The 7o model was trained on approximately 10,000 hours
of robot data, drawn from eight different robot embodiments
and over 60 distinct tasks, including manipulation, cleaning,
and assembly activities [6]. These demonstrations came from
a mix of scripted behaviors and human teleoperation, enabling
the model to generalize across physical forms and skill types.

The mo-FAST model retained a similar dataset scope, but
transformed the demonstration trajectories using the FAST
tokenization scheme, which compresses continuous action
sequences into discrete representations [7]. This formulation
enabled efficient next-token prediction training using standard
autoregressive transformers.
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Table I. Comparison of mto, mo-FAST, and mo.s models.

Architecture Training Strategy

Key Results

Key Contributions

mo: Pre-trained VLM backbone with
flow-matching action policy [6]

Multi-task training on ~10k hours
from 8 robots (various embodiments),
web data [6]

mo-FAST: Autoregressive Transformer ~ Next-token prediction on DCT-
policy with FAST action tokenization compressed action sequences; scaled
[7] to 10k hour dataset [7]

mo.s: Hybrid hierarchical policy (high-
level subtask prediction, continuous
low-level controller) [8]

Co-training on heterogeneous data
(multi-robot, simulation, web, human
instructions); fine-tuned on ~400h
real home robot data [8]

Generalist policy performs diverse
dexterous tasks (e.g., folding
laundry, assembling boxes) via
prompting or fine-tuning [6]

Matched performance of diffusion-
based policy while training is 5x
faster on dexterous tasks [7]

A VLA to generalize to unseen
environments (cleaning new
homes) with ~94% success;
approaches in-domain model

Introduced VLA foundation model
concept; demonstrated cross-
embodiment skill transfer [6]

Proposed FAST tokenization enabled
efficient large-scale VLA training [7]

Demonstrated open-world
generalization via multi-modal co-
training; integrated planning and
control in one model [8]

performance [8]

The mo.s model extended this foundation by introducing a
co-training strategy across a heterogeneous mix of robot
platforms and real-world environments [8]. Although the
paper does not enumerate individual data types, it emphasizes
that mo.s was trained on a broader distribution including long-
horizon tasks in unseen home environments and that its
learning process integrated diverse sources of behavior
supervision. Fine-tuning was performed on real-world data
collected in domestic scenes, enabling mo.s to generalize more
effectively to natural household contexts.

IV. COMPARATIVE OVERVIEW OF THE PI MODEL SERIES

The Pi model series represents a structured progression in
the development of VLA policies, targeting improvements in
efficiency and generalization. Tablel summarizes the
architectural differences, training methods, empirical
performance, and core innovations introduced in each model:
1o, To-FAST, and mo.s.

The mo model established a foundation for generalist robot
control by integrating a pre-trained vision-language backbone
with a continuous action policy trained via flow matching. It
demonstrated that large-scale multi-task behavior cloning
across various robot embodiments could yield a unified policy
capable of handling manipulation tasks via language prompts
or fine-tuned commands.

To address the computational demands of diffusion-based
learning, mo-FAST introduced a discrete action representation
using frequency-space action sequence tokenization. This
allowed the model to shift from continuous action regression
to next-token prediction, enabling significantly faster training
while preserving the high success rates of the mo baseline.

Expanding beyond in-distribution performance, o.s
employed a hierarchical architecture with co-training on
diverse data sources—ranging from robot demonstrations and
web-scale vision-language. By decoupling high-level
reasoning from low-level control, and insulating pre-trained
knowledge during motor learning, mo.s achieved strong
generalization to novel environments such as unseen homes,
marking a new milestone in the Pi series.

Overall, this series reflects a systematic enhancement of
both model capability and learning efficiency, evolving from
strong in-domain competence to robust real-world
applicability.

V. PERFROMANCE COMPARISONS

This section presents a performance comparison of the 7o,
mo-FAST, and mo.s models, focusing on their training
efficiency and final task success rates across household
manipulation benchmarks.

A. Training Efficiency

Figure 1 represents the relative training time required for
each model to reach a remarkable success rate on
manipulation tasks [7]. This comparison highlights the
impact of different policy architectures and training strategies
on sample efficiency. As shown in Fig. 1, mo-FAST reaches a
remarkable success rate in roughly 20% of the training time
required by mo, owing to the FAST tokenization scheme. By
representing actions as discrete tokens, mo-FAST can leverage
efficient sequence learning. mo.s also benefits from FAST
during its pre-training phase achieving comparable sample
efficiency to mo-FAST although its post-training phase
employs the slower flow-matching controller. The mo.s
leverages the efficiency of FAST during its pre-training phase,
which enables it to achieve sample efficiency comparable to
mo-FAST. However, a key distinction lies in the post-training
stage, where mo.s employs a slower flow-matching controller
[8]. Consequently, it is inferred that the overall training time
for mo.s would be longer than that for mo-FAST, which utilizes
the FAST tokenization method throughout its entire training
pipeline.

1.0

Relative Training Time
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Fig. 1. Relative training time to reach 0.8 success rate for mo, mo-FAST, and
o.s. To-FAST trains about 5x faster than mo to achieve the same performance
level, while mo.s attains similar efficiency.
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B. Task Performance

Figure 2 represents a comparison of the task success rates
for different models, evaluating their ability to successfully
execute language-guided tasks within two distinct kitchen
environments [8]. The task success rate metric evaluates a
robot's ability to successfully place the target object in the
specified location. As shown in Fig. 2, the mo.s achieved a
slightly higher success rate than the m-FAST and a
significantly higher rate than the mo. This result highlights the
critical importance of discrete token training for robust
language following and task completion. Furthermore, the
experiments with out-of-distribution objects, which were not
included in the training set, provide a deeper insight into the
models' generalization capabilities. The ability to successfully
handle novel household items demonstrates that the approach
can generalize to previously unseen objects, a key requirement
for real-world robotic applications. Overall, the evolution
from mo to mo-FAST to mo.s shows a trend of maintaining or
improving task success while greatly reducing training time
and expanding generalization.
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Fig. 2. Comparisons of task success rates for mo, m-FAST, and mo.s. To.s
achieves the highest task success rate, with m-FAST outperforming mo.

VI. CONCLUSION AND OPEN CHALLENGES

This paper presented a comparative survey of the o, mo-
FAST, and m.s models within the Physical Intelligence
framework. Through architectural and empirical analysis, we
demonstrated how these models collectively advance the field
of general-purpose robot control.

The mo model introduced the concept of a vision-language-
action foundation policy, capable of performing a wide range
of dexterous tasks across different embodiments via
prompting or fine-tuning. mo-FAST improved upon this
baseline with a novel discrete tokenization of continuous
actions, enabling up to fivefold training efficiency without
compromising success rates. mo.s further extended the
framework by introducing hierarchical planning and co-
training across heterogeneous robot and environment data,
achieving strong performance even in previously unseen
environments.

Despite these achievements, several open challenges
remain. First, mo.s—while exhibiting robust generalization—
still struggles with certain physical and perceptual limitations,
such as unfamiliar hardware (e.g., novel drawer handles),
occlusions in visual input, and inconsistent high-level subtask
inference. Second, current co-training approaches, though
effective, leave room for improvement in balancing diverse
data modalities and increasing the complexity of learned
behaviors.

Future work may focus on:

* Improving performance in partially observable
environments through better memory and long-term
context modeling.

* Enhancing prompt comprehension by incorporating
more sophisticated and richly annotated instruction
data.

* Expanding the training regime with larger-scale and
more varied datasets, including real-world household
interactions.

* Exploring new supervision modalities such as verbal
instruction, enabling more natural human-robot
interaction.

* Developing more adaptive planning architectures
capable of operating across highly dynamic and
ambiguous real-world scenarios.

In summary, the m-series models have made significant
progress toward generalist robot intelligence, offering
scalable architectures, efficient learning methods, and real-
world applicability. Addressing the remaining limitations will
be essential in achieving the next milestone—robots that can
robustly learn, reason, and act across truly open-ended
environments.
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