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Abstract—Sparse reward environments pose a significant chal-
lenge in reinforcement learning (RL) due to the difficulty of
acquiring sufficient informative experiences through exploration
alone. This challenge is particularly severe in visual RL, where
agents must learn from high-dimensional pixel observations,
making exploration less efficient and reward propagation more
difficult. Incorporating expert demonstrations can alleviate this
issue, but in many real-world scenarios, only a limited number
of high-quality demonstrations are available. In this paper, we
propose Balanced Online–Offline Sampling (BOOS), a novel
online RL training strategy that adaptively combines scarce
offline demonstrations with online interaction data to improve
sample efficiency in sparse reward settings. BOOS dynamically
adjusts the sampling ratio between offline and online data
using an exponential decay schedule, prioritizing demonstrations
during early training while progressively increasing reliance on
online exploration. We evaluate BOOS on two widely used vi-
sual robotic manipulation benchmarks, Meta-World and Adroit,
where sparse rewards and high-dimensional observations present
significant learning challenges. Experimental results show that
BOOS significantly outperforms state-of-the-art pure online RL
algorithms in both sample efficiency and final task performance.
These findings highlight the potential of BOOS as a practical
solution for visual RL under the dual constraints of sparse
rewards and scarce demonstrations.

Index Terms—demonstrations, robotic manipulation, sparse
rewards, visual reinforcement learning.

I. INTRODUCTION

Reinforcement Learning (RL) has achieved remarkable
progress in a variety of domains, including robotic manipula-
tion, game playing, and autonomous navigation [1]–[6]. These
successes, however, have been predominantly demonstrated
in environments with dense and informative reward signals,
where agents can obtain frequent feedback to guide policy
improvement. In contrast, sparse reward environments—where
rewards are provided only upon task completion or after
reaching specific milestones—pose a severe challenge for RL
agents [7], [8]. The lack of frequent feedback often results
in inefficient exploration, slow convergence, and unstable
performance.

The challenge becomes even more pronounced in visual RL,
where agents learn directly from high-dimensional pixel obser-
vations rather than low-dimensional state representations [9]–

[16]. High-dimensional inputs exacerbate the credit assign-
ment problem and further reduce the efficiency of exploration,
as the agent must not only discover rewarding behaviors
but also extract meaningful features from raw images. As a
result, training an effective policy in sparse reward visual RL
often requires an impractically large number of environment
interactions.

A promising approach to mitigate sparse reward difficulties
is to incorporate expert demonstrations, which can provide
informative examples of successful behavior and bootstrap
policy learning [17]–[19]. While this approach has proven
effective in various domains, it often relies on access to a large
number of high-quality demonstrations. In practice, however,
such data can be expensive or infeasible to obtain—especially
in robotic manipulation tasks, where expert time is limited
and physical data collection is costly. This leads to the scarce
demonstration setting, where the available demonstration data
is both limited in quantity and critical to the agent’s learning
success.

Existing hybrid RL methods that combine offline demon-
stration data with online environment interactions offer a
promising way to address this challenge [20]–[22]. However,
most existing methods rely on fixed or heuristically chosen
sampling ratios between offline and online data, which can be
suboptimal. In the early stages of training, demonstration data
is most valuable for establishing an initial policy, while in later
stages, the agent should rely more heavily on online explo-
ration to discover novel strategies and improve generalization.
Without an adaptive sampling mechanism, scarce demonstra-
tions risk being underutilized or overexploited, leading to poor
sample efficiency or overfitting.

To address these limitations, we propose Balanced On-
line–Offline Sampling (BOOS), a novel online RL training
strategy that adaptively integrates scarce offline demonstra-
tions with online interaction data. BOOS employs an exponen-
tial decay schedule to prioritize demonstration data in the early
stages and gradually shift toward online experience as learning
progresses. This approach ensures that scarce demonstrations
provide maximum benefit during policy initialization while
still allowing for sustained exploration in later phases. We
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evaluate BOOS on two widely used visual robotic manipu-
lation benchmarks, Meta-World and Adroit, which are both
characterized by sparse rewards and high-dimensional obser-
vations. Experimental results show that BOOS consistently
outperforms state-of-the-art online RL methods in terms of
both sample efficiency and final task performance.

Our contributions can be summarized as follows:
• An adaptive sampling framework for integrating scarce

demonstrations with online data in sparse reward visual
RL tasks.

• A dynamic sampling schedule that prioritizes demon-
strations in early training and gradually transitions to
exploration-driven online learning.

• Extensive empirical evaluation on Meta-World and
Adroit, showing substantial improvements in both sample
efficiency and final task performance over state-of-the-art
pure online RL baselines.

Through this work, we aim to provide a practical and effec-
tive solution for real-world RL applications where agents must
learn under the combined constraints of sparse rewards, high-
dimensional visual observations, and limited demonstration
availability.

II. RELATED WORK

A. Sparse Reward Reinforcement Learning

Sparse reward environments have long been recognized as a
fundamental challenge in RL. In such settings, agents receive
meaningful feedback only after completing a sequence of suc-
cessful actions, making random exploration highly inefficient.
A variety of methods have been proposed to address this
issue, including reward shaping [7], intrinsic motivation [8],
and goal-conditioned RL [23], [24]. While these approaches
can accelerate learning, they often rely on prior domain
knowledge or additional engineered signals, which may not
be available in real-world scenarios. Moreover, in visual RL,
sparse reward problems become even more severe, as the
agent must concurrently learn both the task policy and a high-
dimensional visual representation, significantly increasing the
sample complexity.

B. Visual Reinforcement Learning

Visual RL focuses on learning policies from raw pixel
observations rather than low-dimensional state features. Recent
works have explored representation learning techniques such
as contrastive learning [9], [10], autoencoders [11], [12], and
data augmentation [13]–[16] to improve sample efficiency.
However, in sparse reward visual RL, these methods alone
often fail to overcome the exploration bottleneck, as effective
task learning still requires discovering rare rewarding states.
This difficulty motivates the use of expert demonstrations to
guide exploration and representation learning simultaneously.

C. Learning from Demonstrations (LfD)

Learning from Demonstrations has been widely studied
as a means to bootstrap RL agents in challenging environ-
ments. Imitation Learning (IL) methods, such as behavioral

cloning (BC) [17] and inverse RL [25], directly learn poli-
cies from demonstration data. While effective with abundant
high-quality demonstrations, IL suffers when demonstration
coverage is insufficient. Offline RL methods [18], [19] extend
this paradigm by enabling policy optimization without further
environment interaction, but typically require large, diverse
datasets. In scarce demonstration settings, neither pure IL nor
offline RL is sufficient, as limited data coverage can lead to
poor generalization and overfitting.

D. Hybrid Online–Offline Reinforcement Learning

Hybrid approaches that combine offline demonstrations with
online interaction have shown promise in addressing both
exploration inefficiency and data scarcity. Notable examples
include DAPG [20], which fine-tunes policies initialized with
demonstrations, and methods that interleave offline and online
updates [21], [22]. However, most existing hybrid strategies
use fixed or heuristically chosen sampling ratios between
offline and online data, which can be suboptimal—especially
in scarce demonstration regimes. Without a mechanism to
adaptively adjust the sampling balance over time, these meth-
ods risk either overfitting to the small demonstration set or
underutilizing its guidance.

Our work builds on this line of research by introducing an
adaptive sampling strategy that dynamically balances offline
and online data during training. By prioritizing demonstrations
in the early phase and gradually shifting toward online explo-
ration, our method maximizes the utility of scarce demonstra-
tions while maintaining exploration efficiency, particularly in
visual RL tasks with sparse rewards.

III. METHODOLOGY

In this section, we present BOOS, a novel online RL train-
ing strategy designed to address the combined challenges of
sparse rewards, high-dimensional sensory inputs (specifically,
image pixels), and scarce demonstrations. BOOS dynamically
balances the use of scarce offline demonstrations and online
environment interactions during training. The key idea is to
leverage demonstrations heavily at the start of learning—when
they provide maximum guidance—and gradually shift toward
online exploration as the agent’s policy improves.

A. Problem Formulation

We consider an RL agent interacting with a Markov De-
cision Process (MDP) defined by (S,A, P, r, γ), where S
is the state (or observation) space, A is the action space,
P (s′|s, a) is the transition dynamics, r(s, a) is the reward
function, and γ ∈ (0, 1) is the discount factor. In visual RL,
the agent observes ot ∈ RH×W×C , a high-dimensional image
rather than a low-dimensional state st. We assume access to
a scarce offline demonstration dataset Doffline = {(o, a)}Ni=1

collected by an expert policy πE , where N is very small
(e.g., 1–5 trajectories). The objective is to learn a policy
πθ(a|o) that maximizes the expected discounted return while
making efficient use of Doffline and maintaining strong online
exploration.
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B. Balanced Online–Offline Sampling Schedule

A central component of BOOS is the adaptive sampling ratio
poffline(t), which determines the fraction of training samples
drawn from the offline demonstration dataset at training step
t. This ratio is designed to start high to accelerate policy boot-
strapping from expert data and decay gradually to encourage
online exploration while preventing overfitting. Accordingly,
we define:

poffline(t) = max
(
α · e−βt, pmin

)
, (1)

where α ∈ (0, 1] is the initial offline sampling proportion,
β > 0 controls the decay speed, and pmin > 0 ensures
demonstrations are still occasionally used in later stages.

At each training iteration, we sample a batch of size B:

Boffline = ⌊poffline(t) ·B⌋, Bonline = B −Boffline. (2)

Here, poffline(t) ∈ [0, 1] denotes the fraction of offline samples
used at iteration t, and the floor operator ⌊·⌋ ensures integer
batch sizes.

C. Policy Optimization

BOOS is agnostic to the choice of the underlying RL
algorithm. In this work, we implement BOOS on top of
TD-MPC [26] for continuous control. The combined batch
B = Boffline ∪ Bonline is used to update a latent world model
via the following objectives:

Encoder z = hθ(s)
Latent dynamics z′ = dθ(z, a)

Reward predictor r̂ = Rθ(z, a)
Terminal value q̂ = Qθ(z, a)

Policy prior â = πθ(z)

where s represents a state, a represents an action, and z
represents a latent representation.

The policy πθ is optimized to maximize long-term returns
by guiding the agent towards high-value trajectories. The
overall objective of the world model is to jointly minimize
the latent state prediction error, reward prediction error, and
temporal difference (TD)-error, as formalized in the following
loss function:

L(θ) .
= E(s,a,r,s′)0:H∼D

[
H∑
t=0

λt
(
lP + lR + lQ

)]
, (3)

where lP = ||dθ(zt, at) − sg(hθ(s
′
t))||22 represents latent state

prediction error, lR = ||Rθ(zt, at)−rt||22 represents reward pre-
diction error, and lQ = ||Qθ(zt, at)− (rt + γQθ̄(z

′
t, πθ(z

′
t))||22

represents the TD-error. Here, θ̄ denotes an exponential mov-
ing average of θ and sg(·) denotes the stop-gradient operator.

IV. EXPERIMENTS

We evaluate BOOS on two challenging visual robotic ma-
nipulation benchmarks, Meta-World and Adroit, focusing on
sample efficiency and final task performance under sparse
reward conditions and scarce demonstrations.

A. Benchmarks

We conduct experiments on:
• Meta-World [27]: A suite of MuJoCo-based multi-task

manipulation environments with high-dimensional image
observations. We use sparse reward variants of three rep-
resentative tasks, including pick-place, box-close,
and assembly, where rewards are provided only upon
successful completion.

• Adroit [20]: A set of dexterous manipulation tasks (pen,
hammer, and door) featuring complex dynamics, high-
dimensional observations, and sparse success-based re-
wards. We use the image-based task versions to match
the visual RL setting.

B. Baselines

We compare BOOS against:
• TD-MPC: A model-based RL algorithm achieving state-

of-the-art sample efficiency in dense reward settings.
• BC Pre-training: Behavioral cloning from demonstra-

tions followed by no further RL fine-tuning.

C. Demonstration Setup

For each task, we collect only five demonstration trajectories
using an expert policy. To emulate real-world constraints,
no additional demonstration data is available during training.
Demonstrations are stored in Doffline, while Donline is populated
during interaction.

D. Implementation Details

We implement BOOS and baselines in PyTorch. The offline
sampling ratio parameters are set as α = 0.75, β = 1× 10−6,
pmin = 0.25.

E. Results

Figure 1 compares three configurations: (a) BC-only: pre-
training with BC using limited demonstrations without RL
fine-tuning; (b) TD-MPC fine-tuning: initializing with BC
and training via vanilla TD-MPC; (c) BOOS (ours): initializ-
ing with BC and fine-tuning using our adaptive online–offline
sampling with a world model.

Our experimental results show that BC-only fails to solve
most tasks, reflecting the limitations of imitation learning
when demonstration coverage is small. TD-MPC fine-tuning
performs well in dense reward settings but struggles under
sparse rewards, exhibiting failure on most tasks in Meta-
World and slow convergence and low final success rates in
Adroit. BOOS achieves substantially faster learning and higher
asymptotic performance across all tasks, particularly under
severe demonstration scarcity. Our adaptive sampling consis-
tently accelerates fine-tuning by leveraging demonstration data
early and enabling robust exploration later.

These results confirm that balancing expert and agent-
generated data is critical for improving sample efficiency and
achieving high performance under sparse reward constraints.
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(a)

(b)

Fig. 1: Experimental results averaged over four random seeds for two challenging robotic manipulation benchmarks. Shaded
regions represent 95% confidence intervals. (a) Performance results for three robotic manipulation tasks from the Meta-World
benchmark. (b) Performance results for three dexterous object manipulation tasks from the Adroit benchmark.

V. CONCLUSION

In this study, we proposed BOOS, an effective online RL
training strategy to address both sparse reward and scarce
demonstration challenges. Our method leverages demonstra-
tions heavily in early training and gradually increases online
exploration, ensuring efficient use of limited expert data.

Our experimental results on Meta-World and Adroit demon-
strate that our method significantly improves sample efficiency
and final task performance compared with state-of-the-art pure
online RL algorithms and BC. Our method is algorithm-
agnostic and well-suited for real-world scenarios where col-
lecting demonstrations is costly.
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