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Abstract—In the industry, accurate employee performance
evaluations are essential for compensation and workforce plan-
ning. However, employee performance datasets generally lack
reliable labels. Therefore, we present a semi-supervised learning
framework that combines a small set of expert-labeled records
with a large pool of unlabeled data. In addition, group-based fea-
tures are incorporated to ensure fair workload allocation among
working groups. Also, statistical smoothing is used to stabilize
small groups and weights deviations according to task complexity.
Lastly, an iterative high-confidence pseudo-labeling procedure is
employed to expand the labeled set, while distributional stability
is monitored to prevent imbalance. In numerical studies, the
framework enlarged the labeled portion from 4% to 92% without
destabilizing the core feature distributions. After semi-supervised
learning, the main features had stable means and lower standard
deviations. This shows that the framework reduces the burden
of expert labeling, enables fairer comparisons through group-
based features and statistical smoothing, and can be smoothly
integrated into employee performance analytics pipelines.

Index Terms—Employee performance evaluation, Group-based
features, Pseudo-labeling, Semi-supervised learning, Workload
analysis

I. INTRODUCTION

Performance evaluation is a key element of human resource
(HR) management, guiding major organizational decisions
such as compensation and promotion. However, in efforts to
improve efficiency, the evaluation process is often undermined
by systemic issues. Conventional assessments typically rely
on narrow metrics (e.g., task counts or attendance) [1]. More-
over, dependence on a single manager’s judgment introduces
evaluator-induced bias, and such subjectivity often leads to
inconsistent and potentially unfair outcomes. Overall, these
approaches provide only a partial view of employee perfor-
mance.

Therefore, data-driven performance evaluation models aim
to reduce such subjectivity [2]. However, they face significant
challenges in HR contexts due to the scarcity of reliable
ground-truth labels for employee performance data [3]. This
scarcity hinders model performance and often causes super-
vised models to overfit. Moreover, many approaches lack fea-

ture engineering tailored to organizational structures, resulting
in inconsistent predictions across groups.

To overcome these limitations, semi-supervised learning
(SSL) that trains models using a small set of labeled data to-
gether with a large amount of unlabeled data offers a promising
solution. SSL leverages both labeled and unlabeled employee
performance data and demonstrated strong results in domain
with rich data structures. Methods such as FixMatch [4] and
Noisy Student [5] have demonstrated strong performance, and
both are highlighted in the comprehensive survey by Van
Engelen and Hoos [6]. However, leveraging unlabeled struc-
tured data poses several challenges. For instance, generative
models like Generative Adversarial Networks (GANs) struggle
to learn the complex distributions of tabular data [7]. In this
context, while SSL emerges as a promising alternative, it
also remains underexplored for structured tabular data (e.g.,
employee performance records). This can be attributed to the
lack of clear and consistent patterns in tabular data, which are
essential for common SSL techniques (i.e., augmentation or
stable pseudo-labeling).

To overcome these challenges, we propose an SSL frame-
work that combines workload-based group feature engineer-
ing with an iterative pseudo-labeling strategy. Our approach
adjusts for departmental differences and incorporates work-
complexity ratings. The model then expands the labeled set by
adding high-confidence predictions. In this study, we propose
a tailored SSL methodology designed to build accurate and
generalizable models from complex and label-scarce employee
performance data.

The main contributions of this works are summarized as
follows.

• Group-based feature engineering by designing statistical
features are proposed to normalize workload differences
across departments, roles, and work complexities. With
the proposed feature engineering method, we prove that
it is enable to evaluate fairer performance comparisons.

• Through the iterative pseudo-labeling, we show that it is
possible to control label noise and mitigate overfitting.
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• By analyzing the stability of feature distributions, we
track their means and standard deviations over self-
training iterations to validate the consistency and relia-
bility of the pseudo-labeling process.

The rest of this paper is organized as follows. Section III
presents the proposed performance evaluation framework, in-
cluding data preparation, group-based feature construction,
and the SSL pipeline. Section IV analyzes feature means and
standard deviations over iterations to verify the consistency of
the pseudo-labeling process. Finally, Section V summarizes
the key findings and outlines directions for future research.

II. NOMENCLATURE

For reader’s convenience, we represent the symbols and
variables in Table I.

TABLE I
NOMENCLATURE FOR SYMBOLS AND VARIABLES

Symbol Description
w Workload of the employee
wt Global workload-tier classification
d Department identifier
dt Department-specific workload-tier classification
g Generic group index

g(w) Workload-tier–complexity grouping (wt, cw)

g(d) Department workload-tier–complexity grouping (dt, cw)
cw Work complexity rating
ml Manager label (expert-provided performance label)
ng Number of employees in group g
µg Mean workload within group g
σg Standard deviation of workload within group g
µ Global mean workload across all employees
σ Global standard deviation of workload
λ Shrinkage intensity parameter (set to 50.0 in this study)
ε Small constant to avoid division by zero (10−8)
µ∗
g Smoothed mean workload of group g after shrinkage

σ∗
g Smoothed standard deviation of workload of group g after

shrinkage

The above symbols and variables are used throughout
the subsequent sections to describe the dataset, group-based
features, and the proposed SSL framework.

III. SYSTEM MODEL

This section introduces the proposed system model for
employee performance evaluation using SSL. The framework
addresses the scarcity of labeled employee performance data
by combining a small set of expert-labeled records with a
large pool of unlabeled records. To ensure fair and consis-
tent evaluation across departments and roles, the system ap-
plies workload-based group feature engineering with statistical
smoothing, which reduces the influence of group size and role-
specific differences.

As illustrated in Figure 1, the process consists of four stages.
Section III-A introduces group-based statistical smoothing to
stabilize department–role statistics. Section III-B then defines
relative performance features that normalize workload differ-
ences across organizational groups. Section III-C describes
the iterative semi-supervised learning pipeline, which progres-
sively enlarges the labeled dataset through high-confidence

Fig. 1. Overall structure of the proposed system model.

pseudo-labeling. Finally, Section IV presents the numerical
results, evaluating both the expansion of labeled data and the
stability of feature distributions across iterations. Together,
these components establish a scalable and robust approach
to employee performance evaluation in label-scarce organi-
zational settings.

A. Group-based Feature Engineering

Employee performance datasets commonly contain con-
textual information (e.g., department, role, and job level).
While such attributes provide valuable background, this study
primarily focuses on the relationship between workload and
manager evaluation. To ensure fair comparisons across organi-
zational groups, we construct features derived from workload
as an objective measure. Rather than relying on absolute task
counts, workload is normalized within department–role groups
to capture relative performance. These group-based features
establish a consistent foundation for comparison across differ-
ent organizational contexts.

1) Necessity of Group-Based Smoothing: In employee per-
formance evaluation, workload distributions can vary substan-
tially across departments and roles. For example, employees in
Department A with high-intensity roles might regularly handle
over 500 tasks per evaluation period. On the other hand, in
Department B with more specialized functions might complete
fewer than 200 tasks in the same period. Such differences
make direct comparison of raw workload values misleading.
Moreover, some department–role groups may have very few
employees. Small sample sizes yield unstable estimates of the
mean and standard deviation, which can introduce noise and
drive overfitting to atypical values.

To address this, we apply a smoothing approach that blends
each group’s statistics with the global statistics via a shrinkage
parameter λ. When a group has few samples, its smoothed
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value is pulled toward the global value, improving stability;
when a group has many samples, the smoothed value preserves
the group’s unique characteristics. This yields comparable,
stable, and meaningful relative measures across organizational
groups.

2) Calculation of Smoothed Group Statistics: Let g denote
a generic group index (Table I for the two grouping schemes).
Given the group size ng , group mean µg , group standard
deviation σg , global mean µ, and global standard deviation
σ, the smoothed estimates are:

µ∗
g =

ngµg + λµ

ng + λ
(1)

σ∗
g =

ngσg + λσ

ng + λ
(2)

Here, λ controls how much we pull the group statistics
toward the global values. In this study, λ = 50.0 provides a
good balance between stability for small groups and specificity
for large groups. From these stabilized group statistics, we
derive new features that better capture each employee’s relative
performance, as described in the following subsection III-B.

B. Relative Feature Engineering

Using µ∗
g and σ∗

g , we construct six derived features:
(a) Relative Workload to Group Expectation

wratio =
w

µ∗
g + ε

(3)

In equation (3), we shows the employee’s workload
relative to the group’s expected value, removing scale dif-
ferences between departments/roles and clearly showing
whether the workload is above or below expectations.

(b) Log-Transformed Workload Difference

wlogdiff = log(1 + w)− log(1 + µ∗
g) (4)

In equation (4), we show the workload difference from
the group mean in log scale, which converts multiplicative
gaps into additive ones. The constant 1 prevents undefined
values when w = 0 and reduces the disproportionate
influence of extremely large workloads.

(c) Workload Difference from Group Mean

wdiff = w − µ∗
g (5)

In equation (5), we show the employee’s workload as a
difference from the group mean in the original scale. It
takes positive values when above the group mean and
negative values when below.

(d) Standardized Workload Difference

wz =
w − µ∗

g

σ∗
g

(6)

In equation (6), we show the employee’s workload dif-
ference standardized by the group’s variability, enabling
fair comparisons across groups and identifying unusual
workload patterns.

(e) Complexity-Weighted Workload Difference

wcdiff = wdiff × cw (7)

In equation (7), we show the employee’s workload dif-
ference from the group mean weighted by the work-
complexity rating, so that the same difference receives
greater weight in higher-complexity tasks.

(f) Complexity-Weighted Standardized Difference

wcz = wz × cw (8)

In equation (8), we show the employee’s standardized
workload difference weighted by the work-complexity
rating, ensuring that standardized differences are empha-
sized more strongly for higher-complexity tasks.

TABLE II
SUMMARY OF DERIVED FEATURES

Feature Purpose
wratio Relative workload compared to the group mean; removes

department/role scale effects.
wlogdiff Log-transformed workload difference; converts multiplica-

tive gaps into additive differences and reduces the impact of
extremely large values.

wdiff Workload difference from the group mean in the original
scale.

wz Standardized workload difference that accounts for the
group’s variability and enables fair comparisons.

wcdiff Complexity-weighted workload difference; emphasizes dif-
ferences more strongly for higher-complexity tasks.

wcz Complexity-weighted standardized difference; emphasizes
standardized differences more strongly for higher-
complexity tasks.

The derived features are used as inputs to the SSL frame-
work (Section III-C) with selected base covariates from Ta-
ble I.

C. Semi-Supervised Learning Framework

1) Problem Setting: The dataset contains only a limited
proportion of labeled samples, with about 4% of employee
records having a ml. Such scarcity of labels makes it difficult
to train a reliable supervised model without overfitting. To
address this issue, we propose a semi-supervised learning
(SSL) framework that leverages a small labeled set as a
seed and iteratively expands it by assigning pseudo-labels
to unlabeled samples. The framework builds on the group-
based features described in Section III-A. These features
normalize differences across departments and roles, as well
as workload tiers and work complexity levels, to provide
consistent predictive signals.

2) Input Features: For model training and optimization,
we employ a total of 15 input variables. The base covariates
are cw, w , and log(w). The remaining twelve inputs are
group-level means computed under g(w) and g(d) (in Table I
and Section III-B). These are calculated for six per-employee
features:

{wratio, wlogdiff , wdiff , wz, wcdiff , wcz }
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3) Framework Overview: The SSL pipeline consists of
three main stages:

(1) Initial Model Training. A base classifier is trained exclu-
sively on the labeled subset to establish a reliable baseline. We
employ a gradient boosting decision tree model (XGBoost),
chosen for its robustness to mixed data types and strong
performance on tabular datasets. Hyperparameters are tuned
using cross-validation on the initial 440 labeled samples.

(2) Pseudo-Label Assignment. The trained model is applied
to the unlabeled portion of the dataset to generate probability
scores. Samples with prediction confidence above a threshold
(initially 0.9, progressively lowered in subsequent iterations,
e.g., 0.900, 0.895, 0.890) are assigned pseudo-labels to expand
the labeled pool. The threshold is not decreased below 0.87
to preserve label quality and prevent error propagation.

(3) Iterative Self-Training. The model is retrained on the
augmented labeled set, and the pseudo-labeling process is
repeated. Iterations continue until the increase in labeled
samples per iteration falls below 0.2% or until validation
performance stabilizes.

IV. NUMERICAL RESULTS

We conduct numerical experiments to examine the frame-
work’s effectiveness in enlarging limited labeled datasets,
ensuring feature distribution stability, and detecting reliable
predictions.

A. Evolution of Labeled Samples

Figure 2 presents the progression of labeled and unlabeled
employee records across 10 self-training iterations. The pro-
cess began with 440 manager-labeled records, representing
approximately 4% of the dataset. During the initial iterations,
the labeled set expanded rapidly as the model incorporated
high-confidence pseudo-labels, meeting an initial threshold of
0.900 and gradually relaxing it to 0.870. By the 10 times of
iteration, the framework had generated 9,293 pseudo-labeled
records from the original 440 labels, yielding a total of 9,733
labeled samples, or about 92% of the dataset. The growth
curve shows a clear saturation pattern after the fifth iteration,
indicating that early stages capture the most easily classifiable
employees, while later stages primarily contain records with
greater uncertainty.

Fig. 2. Changes in the number of labeled and unlabeled employee records
over 10 self-training iterations.

Fig. 3. Mean (dots) and standard deviation (shaded area) of five key features
over 10 iterations.

B. Feature Distribution Stability

Figure 3 tracks the mean (dots) and the standard deviation
(shaded bands) of five features over ten self-training rounds.
This subsection summarizes each subplot and explains how
the observed patterns indicate a well-behaved pseudo-labeling
process. Each subplot is denoted as (a)–(e) from top to bottom,
and their characteristics are described in sequence below.

Figure 3 (a) illustrates the trajectory of logw, where the
mean decreases from approximately 9.5 in the first round
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to about 8.0 by round 4, then recovers and stabilizes near
8.6 from round 7 onward. The standard deviation remains
stable across all rounds, showing a consistent pattern as
high-confidence pseudo-labels are incorporated and demon-
strating the robustness of the SSL process. Figure 3 (b)
presents the raw workload w, whose mean follows a V-
shaped path—initially declining and later rebounding—while
the standard deviation contracts during rounds 1–4 but expands
after round 5. This pattern implies that later pseudo-labeling
cycles reintroduced records with larger raw workloads, reflect-
ing controlled variability rather than instability. Figure 3 (c)
shows the complexity-weighted workload cw, with the mean
declining from 1.75 to 1.25 before returning and stabilizing
near 1.5. The early narrowing and slight widening of the
standard deviation after round 5 suggest that the complex-
ity mix stabilized quickly yet preserved some heterogeneity
across tasks. Figure 3 (d) depicts the group-normalized ratio
wratio, which remains centered near 1 throughout the rounds.
Although a short increase in standard deviation appears at
round 5, it decreases in the following round, showing that
temporary changes in group ratios are quickly resolved within
the SSL framework. Finally, Figure 3 (e) highlights the stan-
dardized workload wz grouped by departments, where the
mean consistently stays close to 0, while the standard deviation
steadily decreases to about 0.6 by round 10. This pronounced
reduction in variability reflects increasing homogeneity in
standardized workloads across departments as self-training
progresses.

Overall, these results show that the feature centers re-
main close to their targets (wratio ≈ 1, wz ≈ 0), early
fluctuations are dampened, and no persistent bias appears
in raw-scale statistics. These patterns confirm that pseudo-
labeling effectively expanded coverage without distorting the
core distributions of the most predictive features.

C. Key Takeaways

The labeled set grew from 440 records (4%) to 9,733
records (≈ 92%) by round 10, and the per-iteration gain fell
below 0.2% after round 6, which matches the stopping rule.
Normalized centers remained at their targets. wratio stayed
near 1 across rounds, wz hovered around 0 throughout, and
logw converged near 8.6 after round 7. The standard deviation
of wz declined from about 1.4 to about 0.6 by round 10,
and the standard deviation of logw shrank steadily across
rounds 1–10. Raw-scale w narrowed early then widened after
round 5, which suggests that later cycles reintroduced larger
workloads while avoiding sustained bias. wratio showed one
spike in standard deviation at round 5 that disappeared in
the next round, and cw dipped to about 1.25 then returned
to about 1.5. Taken together, these results show that pseudo-
labeling expanded coverage without distorting core feature
distributions, and point to targeted manual labeling or active
learning as next steps for role- or department-specific pockets.

V. CONCLUSION

This paper addressed the challenge of label scarcity and
cross-unit heterogeneity in organizational performance evalu-
ation. We introduced a semi-supervised framework that blends
workload-tier–aware group feature engineering with iterative
high-confidence pseudo-labeling. The approach uses smoothed
group statistics to normalize scale across departments and
roles, and applies work-complexity weighting to reflect task
difficulty. In addition, we monitored feature-distribution sta-
bility during self-training to prevent bias and to keep inputs
consistent over iterations. The framework is intended to reduce
dependence on expert labels while supporting fairer compar-
isons across organizational units. It is practical for integration
into employee performance analytics pipelines on tabular data.

Future work will extend the framework in four directions.
First, adaptive confidence schedules and uncertainty-aware
selection can improve pseudo-label quality. Second, active
learning can be adopted for department- or role-specific per-
formance evaluation, tailored to specific tasks.

ACKNOWLEDGMENT

This work was supported by Culture, Sports and Tourism
R&D Program through the Korea Creative Content Agency
(KOCCA) grant funded by the Ministry of Culture, Sports and
Tourism (MCST) in 2025 (Project Name: Cultivating masters
and doctoral experts to lead digital-tech tourism, Project
Number: RS-2024-00442006, Contribution Rate: 100%)

REFERENCES

[1] A. S. DeNisi and K. R. Murphy, “Performance appraisal and performance
management: 100 years of progress?” Journal of Applied Psychology, vol.
102, no. 3, pp. 421–433, 2017.

[2] P. Budhwar, A. Malik, M. T. De Silva, and H. Thees, “Artificial
intelligence-challenges and opportunities for international hrm: a review
and research agenda,” The International Journal of Human Resource
Management, vol. 33, no. 6, pp. 1165–1197, 2022.

[3] Z.-H. Zhou, “A brief introduction to weakly supervised learning,” Na-
tional Science Review, vol. 5, no. 1, pp. 44–53, 2018.

[4] K. Sohn, D. Berthelot, N. Carlini, Z. Zhang, H. Zhang, C. Raffel,
E. D. Cubuk, A. Kurakin, and C.-L. Li, “Fixmatch: Simplifying semi-
supervised learning with consistency and confidence,” in Advances in
Neural Information Processing Systems, vol. 33, 2020, pp. 596–608.

[5] Q. Xie, M.-T. Luong, E. Hovy, and Q. V. Le, “Self-training with
noisy student improves imagenet classification,” in Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition,
2020, pp. 10 687–10 698.

[6] J. E. Van Engelen and H. H. Hoos, “A survey on semi-supervised
learning,” Machine Learning, vol. 109, no. 2, pp. 373–440, 2020.

[7] L. Xu, M. Skoularidou, A. Cuesta-Infante, and K. Veeramachaneni,
“Modeling tabular data using conditional gan,” Advances in neural
information processing systems, vol. 32, 2019.

1015


