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Abstract—In Multiplayer Online Battle Arena (MOBA) games,
item recommendation plays a crucial role in supporting players’
strategic decision making. Unlike conventional recommendation
tasks, item selection in MOBA is highly context-dependent,
influenced by the champion identity, positional role, current
inventory, and the compositions of both allies and enemies. In this
work, we propose a context-aware recommendation framework
based on Field-aware Factorization Machines (FFM), which
effectively captures feature interactions across heterogeneous
fields. To generate training data suitable for ranking, we design
a negative sampling strategy that contrasts the ground-truth
item against multiple randomly sampled alternatives. Experi-
ments demonstrate that our approach outperforms conventional
baselines in ranking metrics such as Hit@K, NDCG@K, and
MRR, thereby validating the utility of FFM in modeling complex
contextual dependencies in MOBA environments.

Index Terms—recommender systems, factorization machines,
item recommendation, multiplayer online battle arena, moba

I. INTRODUCTION

Item recommendation in Multiplayer Online Battle Arena
(MOBA) games has emerged as a vital research area in
both the game industry and academic communities. Unlike
traditional recommendation systems where user–item inter-
actions are relatively static, MOBA item choices are made
under dynamic and multifaceted contexts. A player’s decision
to purchase a particular item depends on multiple factors,
including the champion identity, positional role, evolving team
compositions, and previously acquired items. These intricate
dependencies pose significant challenges for building effective
recommendation systems.

To address these challenges, we explore Field-aware Fac-
torization Machines (FFM) as the foundational model for our
recommendation framework. A key advantage of FFM is its
ability to model field-specific feature interactions, making it
particularly suitable for heterogeneous game contexts. For
instance, our model distinguishes between fields such as
the champion field, ally team field, enemy team field, and
candidate item field, allowing it to learn nuanced interactions
that conventional factorization or deep learning models may
overlook.

This work provides three main contributions. First, we
propose a structured field representation of complex MOBA
gameplay situations, capturing champion identity, team com-
positions, and item context. Second, we introduce a ranking-
oriented negative sampling strategy tailored to the recommen-
dation task. Finally, through comprehensive experiments, we
demonstrate that our FFM-based approach effectively mod-
els contextual signals and achieves competitive performance
across standard ranking metrics.

Our findings demonstrate that field-aware models can si-
multaneously achieve accuracy, interpretability, and scalability
in context-dependent recommendation tasks. In particular, by
validating their effectiveness in the complex domain of MOBA
item recommendation, this study highlights the significant
potential of these methods for advancing intelligent systems
in game analytics.

II. RELATED WORKS

A. Factorization Machines

Rendle [1] first proposed Factorization Machines (FM) as
a general predictor for modeling pairwise feature interactions
in sparse high-dimensional data. By combining the strengths
of polynomial regression with the parameter efficiency of
matrix factorization, FM provides a flexible and scalable
framework that is particularly effective in recommendation and
ranking tasks. Each feature is represented by a latent vector,
and their pairwise inner products approximate interaction
effects, thereby alleviating sparsity issues. FM has demon-
strated strong performance in diverse domains such as click-
through rate prediction, rating prediction, and personalized
recommendation.

B. Field-aware Factorization Machines

Juan et al. [2] extended FM by proposing FFM, which
introduces field-specific embeddings to enhance modeling ca-
pacity. In FFM, each feature is associated with different latent
vectors depending on the target field with which it interacts.
This design allows the model to capture heterogeneous rela-
tionships more precisely, such as distinguishing interactions
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between user–item pairs from those between item–context or
item–position pairs. FFM has achieved state-of-the-art results
in large-scale recommendation benchmarks, including CTR
prediction competitions, and has been widely adopted in in-
dustry applications for its superior capacity to handle complex
categorical structures.

C. Recommendation in MOBA Games

Recent studies have examined recommendation in MOBA
games [3], [4], a domain where item choices are highly
dynamic and context-dependent. Unlike conventional recom-
mendation scenarios, a player’s decision is influenced not only
by their own champion and positional role but also by the
evolving composition of allies and enemies, as well as previ-
ously acquired items. Various machine learning approaches,
ranging from collaborative filtering to deep learning, have
been applied to model these complex dependencies. However,
field-aware models such as FFM remain underexplored in this
domain, despite their strong potential for capturing hetero-
geneous contextual signals. Our work bridges this gap by
applying FFM to MOBA item recommendation, demonstrating
its effectiveness in modeling the interplay between champion
identity, team composition, and item context.

III. PROPOSED METHOD

A. League of Legends

League of Legends is a team-based strategy game in which
two teams (Blue and Red), each consisting of five champions,
compete to destroy the opponent’s base, known as the Nexus.

A unique characteristic of this game is that champion
performance is strongly influenced by item acquisition during
a match. Items provide not only raw statistical enhancements
(e.g., attack power, defense, mobility) but also situational utili-
ties such as healing reduction, vision control, or crowd-control
effects. Consequently, item purchase decisions directly affect
the outcome of lane skirmishes, team fights, and ultimately, the
game itself. Unlike static role assignments or fixed champion
abilities, the evolving sequence of purchased items introduces
a highly dynamic decision-making process. This characteristic
makes League of Legends a natural yet challenging domain
for item recommendation research. An effective system must
therefore account for numerous factors, including champion
identity, positional role, team compositions, and the temporal
sequence of prior purchases.

B. Dataset

Our dataset was constructed from match data from League
of Legends patch 15.15. A total of 12,074 high-ranked solo
queue games (Challenger, Grandmaster, and Master tiers) were
collected in JSON format via the official Riot Games API.
From these match logs, we extracted minute-by-minute item
purchase and sale events, which were then aggregated into a
single DataFrame.

To contextualize each recommendation instance, we en-
riched the event logs with team compositions and player roles.

Each record was subsequently structured into the following
fields:

• ChampionId (Champ): The champion played by the
focal player.

• ContextKey (Ctx): The sequence of items the player had
acquired up to that point.

• CandidateItem (Cand): The next item purchased, serv-
ing as the prediction target.

• AllyComp (Ally): The set of allied champions in the
match.

• EnemyComp (Enemy): The set of enemy champions in
the match.

• PositionId (Pos): The positional role of the player (e.g.,
top, jungle, mid, bottom, support).

To ensure consistent model training, we standardized all
champion and item identifiers. Specifically, the original in-
game keys (e.g., a champion with ID 711) were remapped to a
compact categorical index (e.g., 711 → 155). This preprocess-
ing step ensured that all 171 unique champions and 214 unique
items were represented by consecutive integer IDs, which
facilitates efficient embedding and field-aware modeling.

Through this pipeline, we obtained a large-scale, training-
ready dataset of approximately 1.65 million interaction in-
stances. This dataset robustly captures the heterogeneous con-
textual factors influencing item decisions, providing a solid
foundation for our field-aware recommendation models.

C. Field-aware Factorization Machines Modeling

The proposed recommendation framework is based on the
FFM, which is particularly suitable for capturing heteroge-
neous contextual signals in MOBA environments. Unlike con-
ventional factorization models that assign a single embedding
to each feature, FFM allocates distinct embeddings depending
on the interacting field. This allows the model to capture subtle
relationships such as champion–ally, champion–opponent, and
item–context interactions that arise in dynamically evolving
game states.

In our formulation, each categorical input field (champion,
position, context, ally, enemy, and candidate item) is encoded
into a field-specific embedding tensor. These embeddings are
then processed through two complementary components: (i)
a pairwise interaction layer that models second-order feature
interactions, and (ii) a linear layer that aggregates global biases
and individual feature contributions. The outputs of these
two components are combined and passed through a sigmoid
activation function to estimate the probability that a candidate
item will be selected in the next step.

This design provides three key advantages for MOBA
item recommendation. First, field-specific embeddings enable
the model to clearly distinguish between different types of
interactions, such as the synergy effects that certain cham-
pions exhibit within allied team compositions. Second, the
factorization structure ensures parameter efficiency, allowing
the model to scale to hundreds of champions and items without
overfitting. Third, the parallel linear component preserves the
direct contribution of individual features, thereby enhancing
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Fig. 1. Schematic illustration of the proposed field-aware factorization machine architecture. Each categorical input field (Champion, Position, Context, Ally,
Enemy, and Candidate) is mapped to a field-specific embedding tensor of shape (size, T, k), where T = m−1 denotes the number of target fields per feature
(excluding its own field) and k is the embedding dimension. The embeddings are used to compute pairwise interaction terms,

∑
i<j xixj⟨vi,f(j), vj,f(i)⟩,

while a parallel linear component aggregates the global bias and weighted features, b+
∑

i wixi. The two contributions are merged (⊕) into the final logit
z, which is passed through a sigmoid function to yield the candidate probability, p = σ(z).

interpretability. Taken together, these characteristics establish
FFM as a scalable and interpretable approach for modeling
complex dependencies in MOBA item recommendation.

IV. EXPERIMENTAL RESULTS

We evaluate the proposed FFM on the processed League
of Legends dataset. The experiments focus on the effect
of embedding dimensionality k ∈ {8, 16, 32, 64}, and on
the negative sampling strategy employed during training and
evaluation.

A. Training and Evaluation Protocol
We adopt a ranking-based negative sampling approach for

both training and evaluation. During training, for each ground-
truth instance (the true next item), we sample Kneg train =
50 negative items to form the candidate set. This approach
balances computational efficiency with the need for the model
to learn to discriminate between relevant and irrelevant items.
For evaluation, however, we employ a more rigorous protocol
to simulate a realistic scenario. The candidate set for each
prediction is expanded to include all 213 other items available
in the game. This requires the model to rank the true item
against every possible alternative, providing a comprehensive
test of its ranking capability.

B. Evaluation Metrics
We employ multiple ranking-based metrics, each capturing

complementary aspects of recommendation quality:
• Accuracy@1 (Acc): proportion of cases where the top-

ranked item is the ground-truth choice. This is the strictest
evaluation of prediction correctness.

• Mean Reciprocal Rank (MRR): averages the reciprocal
rank of the true item. It rewards predictions that rank the
correct item near the top.

• Hit@K: checks whether the ground-truth item appears
within the top-K predictions. This reflects practical us-
ability when players are recommended a short list.

• Normalized Discounted Cumulative Gain(NDCG)@K:
measures ranking quality with position-based discounts,
giving higher credit to correctly ranked items near the top
of the recommendation list [5].

The combination of these metrics ensures a comprehensive
evaluation: strict correctness (Accuracy), overall ranking qual-
ity (MRR, NDCG), and practical recommendation utility (Hit).

C. Performance with Different Embedding Dimensions

Table I summarizes the performance of FFM with dif-
ferent embedding dimensions (k). The results indicate that
increasing the embedding dimension from k = 8 to k = 16
yields a notable performance improvement across all metrics.
For instance, Accuracy@1 rises from 0.3204 to 0.3504, and
NDCG@10 improves from 0.5932 to 0.6243. Further enlarg-
ing the embedding dimension to k = 32 and k = 64 provides
only marginal gains, with Accuracy@1 converging around
0.3564 and NDCG@10 stabilizing near 0.6335. These results
suggest that while higher embedding dimensions can capture
richer interactions, the performance gains saturate beyond
k = 16.
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TABLE I
FFM PERFORMANCE WITH DIFFERENT EMBEDDING DIMENSIONS (k).

Dim k Acc@1 MRR Hit@3 Hit@5 Hit@10 NDCG@3 NDCG@5 NDCG@10 #Params Time/Epoch (sec)
8 0.3204 0.5058 0.6191 0.7529 0.8899 0.4933 0.5485 0.5932 46,355 43.05

16 0.3504 0.5367 0.6588 0.7925 0.9154 0.5289 0.5840 0.6243 91,763 95.02
32 0.3563 0.5447 0.6697 0.8052 0.9230 0.5379 0.5939 0.6326 182,579 128.65
64 0.3564 0.5453 0.6713 0.8068 0.9246 0.5389 0.5948 0.6335 364,211 305.10

TABLE II
EFFICIENCY BY EMBEDDING DIMENSION: METRIC-PER-SECOND AND

RELATIVE EFFICIENCY (NORMALIZED TO k=8 = 100%).

Dim k Top-1/sec Rel. (%) Top-K/sec Rel. (%)
8 0.00960 100.0 0.01509 100.0

16 0.00467 48.6 0.00720 47.7
32 0.00350 36.5 0.00539 35.7
64 0.00148 15.4 0.00228 15.1

TABLE III
PARAMETER-NORMALIZED EFFICIENCY: AVERAGE PERFORMANCE PER

105 PARAMETERS (NORMALIZED TO k=8 = 100%).

Dim k Top-1/Param Rel. (%) Top-K/Param Rel. (%)
8 0.89117 100.0 1.40111 100.0
16 0.48336 54.2 0.74538 53.2
32 0.24674 27.7 0.37955 27.1
64 0.12379 13.9 0.19082 13.6

D. Efficiency Analysis

We evaluate efficiency based on two aggregate metrics: Top-
1, defined as the average of Acc@1 and MRR, and Top-K,
defined as the average of Hit@3/5/10 and NDCG@3/5/10.
Table II summarizes efficiency in terms of performance per
training time. k = 8 achieves the highest efficiency, while
larger embedding dimensions incur steep drops: k = 16
retains only 50%, k = 32 35%, and k = 64 merely 15% of
the baseline efficiency. Although larger embeddings slightly
improve accuracy, they do so at a disproportionately high
computational cost. Thus, k = 16 provides a balanced trade-
off, whereas k = 8 remains the most efficient choice for
scalable deployment.

Table III further presents parameter-normalized efficiency.
While the number of parameters increases linearly with
embedding dimension, performance saturates rapidly in a
logarithmic-like manner. As a result, parameter efficiency
declines almost proportionally with model size: from 100%
at k = 8 to only 54% at k = 16, 27% at k = 32, and
14% at k = 64. This demonstrates that larger models do not
yield proportional accuracy gains, but instead suffer sharply
diminishing returns.

In summary, embedding dimension scaling exhibits clear
diminishing returns: accuracy improvements saturate, while
training time and parameter count grow substantially. k = 8
and k = 16 emerge as the most practical trade-offs for large-
scale deployment.

V. CONCLUSION AND FUTURE WORKS

In this work, we investigated the task of item recommen-
dation in MOBA games, where decision-making is inherently
context-dependent and influenced by multiple heterogeneous
factors. To address the complexity of such dependencies, we
proposed the use of FFM as the recommendation backbone.
By leveraging field-specific embeddings, our approach effec-
tively captures nuanced interactions across champion identity,
positional role, team compositions, and item context.

In addition, this study adopted a negative sampling strategy
to align with the ranking-oriented nature of the recommen-
dation task. The proposed approach demonstrated stable and

strong performance overall. Notably, while increasing embed-
ding dimensionality is beneficial up to a certain point, further
expansion yields diminishing returns in performance while
sharply escalating computational costs. This highlights the
necessity of carefully balancing accuracy and efficiency when
deploying models in large-scale real-world environments.

Overall, our findings validate both the effectiveness and
limitations of field-aware models in MOBA item recommen-
dation. Beyond demonstrating the utility of FFM in capturing
heterogeneous contextual dependencies, this study emphasizes
the need to balance predictive accuracy with computational
efficiency in real-world systems. Future research directions
include extending the framework to sequential modeling of
item purchases, integrating temporal dynamics of matches,
and exploring hybrid architectures that combine field-aware
factorization with deep neural models.
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