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Abstract—Accurate estimation of drivers’ cognitive load is
essential for ensuring driving safety and performance. Although
unimodal physiological signals, such as EEG or ECG, are
widely used, they often provide limited information, leading to
suboptimal classification performance. To address this limita-
tion, we proposed an efficient modality fusion framework that
leverages multimodal physiological signals for cognitive load
classification. The framework can extract features from EEG
and ECG signals using parallel 1D convolutional layers and
ResNet-style blocks, followed by self-attention to refine intra-
modality dependencies and cross-attention to capture comple-
mentary inter-modality interactions. Experiments on the CL-
Drive public benchmark dataset evaluated the framework’s per-
formance under both binary and ternary classification settings,
using 10-fold cross-validation and leave-one-subject-out (LOSO)
protocols. The proposed framework consistently outperformed
conventional machine learning models and state-of-the-art deep
learning approaches, achieving accuracies of 85.69% (10-fold CV)
and 76.26% (LLOSO) for binary classification, and 78.79% (10-
fold CV) and 63.68% (LLOSO) for ternary classification. These
results highlight the importance of attention-based multimodal
fusion for robust cognitive load estimation, suggesting its strong
potential for applications in intelligent transportation systems
and brain—computer interface development.

Index Terms—cognitive load classification, modality fusion,
physiological signal analysis, mental state detection

I. INTRODUCTION

Assessing the cognitive load provides valuable insights into
users’ mental states during complex tasks [1]. In particular,
the cognitive load emerging from driving-related factors, such
as navigation operations or drowsiness, has been strongly
associated with traffic accidents [2], as it often causes delayed
reactions and erroneous decision-making. Accordingly, under-
standing drivers’ cognitive load is indispensable for ensuring
both safety and driving performance [3]. Consequently, there
is an increasing demand for research that aims to accurately
classify drivers’ cognitive load.

Methods for classifying driver cognitive load rely mainly
on physiological signals, as these signals offer direct insights
into driver mental states and facilitate precise classification [4].
Several deep- learning models employing unimodal physiolog-
ical data have been proposed for analyzing driver states [5],
[6]. Cui et al. [5] introduced an explainable convolutional neu-
ral network (CNN) model that integrates heterogeneous style
features across subjects and minimizes interlabel distances,
thereby mitigating intersubject variability in physiological
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signals. Pulver et al. [6] proposed a binary classification model
for the cognitive load using unimodal electroencephalogram
(EEG) data, leveraging a transformer architecture combined
with transfer learning. Although unimodal approaches have
been extensively conducted, such signals inherently provide
limited information, hindering the ability to capture a com-
prehensive representation of the driver’s state.

Consequently, recent studies have increasingly focused on
integrating two or more multimodal physiological signals to
achieve a holistic analysis of driver conditions and support
various scenarios [7], [8], [9]. Liu et al. [7] combined EEG and
Galvanic Skin Response (GSR) signals to improve emotion
recognition. They first encoded each signal using multiple
transformer encoders, and then fused the encoder outputs
based on inter-modality interactions. In addition, they em-
ployed knowledge distillation to transform multimodal features
into a unimodal GSR model, thereby enhancing the perfor-
mance of the model for emotion classification. Azizi et al. [8]
proposed an input-level fusion approach to assess the cognitive
load of drivers by jointly analyzing EEG and ECG signals.
They employed a pretrained biosignal transformer model [10]
and fed it with integrated EEG and ECG signals. UniPhyNet
was proposed by [9] to classify drivers’ cognitive load using
various physiological signals, such as EEG, ECG, and Electro-
dermal Activity (EDA). Each signal is encoded using a feature
extraction block consisting of 1D convolutional blocks and
a ResNet-style network, after which the features from each
block are concatenated. Although multimodal deep learning
models for physiological signal analysis offer advantages, such
as greater robustness to noise, resilience to missing data, and
a more comprehensive evaluation of drivers’ cognitive states,
they often face challenge: their classification performance is
frequently inferior to that of unimodal approaches.

Thus, in this study, we address these limitations by propos-
ing an efficient modality fusion method for driver cognitive
load classification. Specifically, the method first encodes fea-
tures from each physiological signal, and then employs self-
and cross-attention mechanisms to model nonlocal temporal
dependencies within each modality and facilitate the exchange
of complementary information across modalities. This de-
sign mitigates the performance degradation often observed in
multimodal settings as well as enhances the model’s ability
to capture complementary intermodal information, thereby
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Fig. 1. Overview of the model architecture.

improving the overall classification accuracy and robustness.
The main contributions of this study are summarized as
follows:

o We introduce an efficient modality fusion framework for
driver cognitive load classification. The framework ex-
tracts features from multimodal physiological signals us-
ing a combination of 1D convolutional layers and ResNet-
style networks, and captures complementary inter-modal
dependencies through self- and cross-attention mecha-
nisms.

o We demonstrate the effectiveness of the proposed frame-
work on the CL-Drive public benchmark dataset [11],
where it consistently outperforms unimodal baselines in
terms of both accuracy and robustness.

The remainder of this paper is structured as follows: Section
2 introduces the proposed methodology, Section 3 details the
experimental setup, Section 4 discusses the results, and Section
5 concludes the paper.

II. PROPOSED METHOD

We introduced an efficient modality fusion framework to
classify drivers’ cognitive load. The proposed method employs
two modalities, EEG and ECG signals as inputs. The archi-
tecture of the model is illustrated in Fig. 1 comprises three
main stages: the feature extractor, modality fusion module, and
classification module.

A. Feature Extractor

The feature extractor, inspired by UniPhyNet [9], encodes
useful information from each signal and consists of 1D parallel
convolutional blocks and a ResNet-style network, as shown in
Fig. 1. Each input branch begins with several 1D convo-
lutional layers running in parallel, and each layer employs

a different kernel size. This design allowed the network
to capture both rapidly changing local signal patterns and
slowly varying temporal trends. By concatenating the resulting
feature maps, the model formed a rich representation that
integrates information across multiple timescales. Sigmoid-
weighted linear unit (SiLU) [12] activation was employed to
ensure stable gradients and improve optimization.

Subsequently, the multiscale features are processed using a
stack of ResNet blocks [13] combined with a convolutional
block attention module [14], which further enhances feature
extraction. Within each residual block, the attention mecha-
nism adaptively emphasizes informative signal components.
This mechanism operates across both feature channels and
along the temporal dimension, thereby guiding the network
toward salient patterns while reducing the impact of irrelevant
noise.

B. Modality Fusion Module

In this work, to simultaneously incorporate both the tem-
poral order and modality-specific rich features of EEG and
ECG, each unimodal feature sequence was represented as
a two-dimensional matrix across the temporal and feature
dimensions. Accordingly, the EEG and ECG sequences are
denoted as:

Xgpg € RT*4 ) Xpeg € RT %, (1

where T represents the temporal length and d. and d. denote
the embedding dimensions of the EEG and ECG modalities,
respectively.

In the modality fusion module, unimodal feature sequences
are first enriched through self-attention, which captures long-
range temporal dependencies and refines modality-specific
representation. The multi-head attention mechanism serves as
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a sub-layer in both the encoder and decoder blocks of the
transformer architecture and builds upon scaled dot-product
attention [15]. The scaled dot-product attention can be formu-
lated as:

Attention(Q, K, V) ft (QKT> A\ 2)
ention(Q, K, V) = softmax .
Vdy

The resulting single-head attention function is expressed as

follows:
head; — Attention (QW?, KWE vwY ) )

In this case, each head i applies its own learnable weight matri-
ces to transform Q, K, and V allowing it to focus on learning
from a restricted subspace of the feature representation [15].

The outputs of all attention heads are concatenated along
the feature dimension and subsequently projected with the
parameter matrix W, to form the Multi-Head self-attention
(MHA) representation, defined as

MHA ¢(X) = Concat(Atn(Qn, Kn, Vi) Wo.  (4)

This operation enables the model to learn nonlocal temporal
dependencies that cannot be captured by only convolutional
filters.

Considering Xggg and Xgcg, the refined unimodal repre-
sentations Xggg and Xgeg are computed by applying MHA
as follows:

XpeG = MHAi(XeeG),  Xece = MHAi(Xecg).  (5)

Subsequently, to enable the exchange of complementary
information across modalities, bidirectional cross attention was
applied, yielding the following formulation:

XeeG = MHA ross (XEEGW; Xeco Wi, XECGWf;) ; (6)

Xece = MHA ross (XECGWZa Xees Wi, XEEGW$> s (D

where W, W;, and W, denote the learnable projection
matrices for the query, key, and value, respectively, specific
to each modality. This bidirectional interaction allows each
modality to reinforce its representation by employing comple-
mentary information.

Finally, refined unimodal representations XEEG and XECG
obtained from self-attention, together with the cross-
attention—enhanced features XEEG and XEC(;. are concatenated
to form the final fused feature representation.

Xiusea = Concat|Xpgg, Xeca, Xero, Xeca)- 3

This fused representation integrates modality-specific refine-
ments and cross-modal complementary information, thereby
providing a comprehensive feature space for subsequent clas-
sification.
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C. Classification Module

The fused representations are passed into a bidirectional
GRU (Bi-GRU) to capture sequential dependencies over time
explicitly:

— — — «—
hy=GRU(F¢, hy—1), h;=GRU(F, hip1), (9)

he = (4], (10)

where F, denotes the fused feature at the time step t.
represents the current state. Accordingly, h; is the feature
representation at time step ¢, which is updated by integrating
the current input F; with the past and future hidden states
[16].

This representation allows the Bi-GRU to aggregate contex-
tual information from both past and future directions, enabling
the network to capture long-term temporal dynamics. Consider
the inherently time-varying nature of EEG and ECG signals,
incorporating future context enhances the interpretation of the
current state.

The output of the GRU is concatenated with the pooled
attention features, providing a comprehensive multimodal rep-
resentation. This concatenated vector is passed through a fully
connected layer with an SiLU activation function [12] to
introduce nonlinear transformations, thereby enhancing the
feature expressiveness. Finally, a second fully connected layer
projects the transformed representation onto the target label
space to produce the classification logits.

III. EXPERIMENTAL SETUP

The CL-drive dataset proposed by Angkan et al. [17] was
used to evaluate the performance of the proposed method. This
dataset was collected in a driving simulation environment to
assess cognitive load, comprising physiological signals, such
as EEG, ECG, and EDA, as well as eye-tracking data from 23
participants (17 females and 6 males). In our experiments, we
utilized two physiological signals, EEG and ECG. The EEG
data were recorded from four channels (‘AF7’, ‘AF8’, ‘TP9’,
and ‘TP10’), while the ECG data were obtained from three
calibrated channels (‘LL-RA’, ‘LA-RA’, and ‘Vx-RL"). After
each driving session, the participants rated their perceived
cognitive load on a 9-point Likert scale ranging from 1 (low)
to 9 (high).

The raw ECG data contain numerous missing values, which
hinder accurate model training. Therefore, we adopted the
ECG preprocessing protocol proposed by Azizi et al. [8], in
which a fifth-degree polynomial was fitted to corrupted chan-
nels, and the periodic pattern was reconstructed by replacing
each missing value at time ¢ with the corresponding value in
the same phase.

All data samples were segmented into 10-second intervals,
and for EEG, any segment containing missing values was
discarded. During preprocessing, the sampling rates were set to
512 Hz and 256 Hz for the ECG and EEG signals, respectively.

For labeling, the self-reported Likert scores were mapped
as follows: in the binary classification setting (following [8],



[9]), scores from 1-4 were labeled as ‘low’ and scores from
5-9 as ‘high’; in the ternary classification setting, scores from
1-3 were labeled as ‘low’, scores from 4-6 as ‘medium’, and
scores from 7-9 as ‘high’. These binary and ternary labels
served as the ground truth for model training and evaluation.

After preprocessing, the number of generated data samples
was balanced to 3,074 for both the EEG and ECG modal-
ities. Averagely, each participant contributed approximately
146 samples. The label distributions for binary and ternary
classification are summarized in Table L.

TABLE I
LABEL DISTRIBUTION FOR BINARY AND TERNARY CLASSIFICATION
TASKS
Setup Label Count
. . . Low 1,302
Binary classification High 1772
Low 821
Ternary classification | Medium 1,604
High 649

The EEG and ECG signals used in this study exhibit
substantial inter-subject variability and are influenced by ex-
ternal factors, such as environmental conditions and sensor
placement, which can alter signal phase [18], [19]. To consider
these characteristics, we adopted both 10-fold cross-validation
(10-fold) and Leave-One-Subject-Out (LOSO) evaluation pro-
tocols. A 10-fold setup was employed to evaluate the average
performance of the model, whereas the LOSO protocol was
used to assess the generalization capability across different
subjects.

In all experiments, the proposed model was trained for
60 epochs with a batch size of 64 using the AdamW op-
timizer. Overfitting was observed early in training, as vali-
dation accuracy consistently lagged behind training accuracy.
Therefore, we employed the ReduceLROnPlateau scheduler,
which dynamically adjusts the learning rate based on improve-
ments in validation performance. For data augmentation, three
techniques—Gaussian noise, temporal warping, and random
amplitude scaling—were applied following the approach of a
previous study [9].

For EEG signal analysis in the feature extractor, kernel sizes
of 5 and 11 were used in the 1D convolutional layers to capture
the short- and long-time window features, respectively. For the
ECG signal analysis, kernel sizes of 3 and 9 were employed.
The outputs of these convolutional layers were encoded using
nine and eight residual blocks for the EEG and ECG, respec-
tively, thereby enabling deeper representation learning. In the
modality fusion module, the embedding dimension was set to
64 and the number of heads was set to 4 for the self- and
cross-attention mechanisms. For cognitive load classification,
the GRU layer was configured with a hidden size of 128,
followed by two fully connected layers of 128 neurons each.

IV. EXPERIMENTAL RESULTS

In this section, we present the evaluation results of the
proposed model across four experimental settings: LOSO

binary, LOSO ternary, 10-fold binary, and 10-fold ternary cross
validations. To assess the model performance, we conducted
comparisons against both classical machine learning and
modern deep learning baselines. Classical baselines include
Random Forest (RF) and Extreme Gradient Boosting (XGB),
whereas deep learning baselines include ResNet, UniPhyNet
[9], and transformer-based models [8]. Accuracy and F1-score
were employed as evaluation metrics.

A. Effect of Modality Fusion

The results under the three configurations—unimodal EEG,
unimodal ECG, and bimodal EEG-ECG—using both LOSO
and 10-fold cross-validation are summarized in Tables II
and III. Table II reports binary classification results, whereas
Table III presents ternary classification results. In Table II,
the bimodal EEG-ECG setting achieves the best performance
under both 10-fold CV and LOSO, with accuracies of 85.69%
and 76.26%, respectively. Similarly, in Table III, the bimodal
configuration substantially outperforms unimodal EEG and
ECG, achieving accuracies of 78.79% and 63.68% under the
10-fold CV and LOSO, respectively.

These results demonstrate that the integration of self-
attention and cross-attention mechanisms enables a more
effective fusion of modality-specific features. By leverag-
ing complementary information across distinct physiological
modalities, the proposed model achieved an accurate and a
robust estimation of drivers’ cognitive states.

TABLE II
PERFORMANCE OF CL-DRIVE BINARY CLASSIFICATION IN 10-FOLD CV
AND LOSO TEST SETUPS

Setup Modality Accuracy (%) | Fl-score (%)
EEG 76.55 76.62
10-fold CV ECG 84.52 84.57
EEG & ECG 85.69 85.70
EEG 62.22 61.48
LOSO ECG 56.73 57.01
EEG & ECG 76.26 76.55

TABLE III

PERFORMANCE OF CL-DRIVE TERNARY CLASSIFICATION IN 10-FOLD
CV AND LOSO TEST SETUPS

Setup Modality Accuracy (%) | Fl-score (%)
EEG 67.93 67.96
10-fold CV ECG 7791 77.96
EEG & ECG 78.79 78.77
EEG 45.93 47.58
LOSO ECG 43.24 43.32
EEG & ECG 63.68 63.86

B. Comparison with State-of-the-art Models

Furthermore, we compared the performance of the proposed
method with those of state-of-the-art approaches [8], [9] and
conventional baselines. The results presented in Tables IV and
V demonstrate that our method consistently outperformed all
competing models. For instance, in binary classification, it
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achieved accuracies of 85.69% under 10-fold CV and 76.26%
under LOSO, surpassing conventional machine learning mod-
els (RF, XGB, and ResNet) and advanced deep learning
methods (UniPhyNet and Transformer-based models).

Although various deep learning models operating directly on
raw signals without handcrafted features perform on par with
or even below feature-engineered machine learning models,
our approach leverages attention-based multimodal fusion to
emphasize the most discriminative representations. This design
consistently provided superior accurate results and F1-scores
across the evaluation settings.

Importantly, the pronounced performance gains under the
LOSO protocol highlight the robustness of our framework to
substantial intersubject variability, underscoring its strong gen-
eralization capability. These findings confirm that attention-
driven multimodal fusion is crucial for exploiting cross-modal
complementarities and achieving reliable driver cognitive-load
classification.

TABLE IV
COMPARISON OF MODEL CLASSIFICATION PERFORMANCE BASED ON EEG
AND ECG MODALITIES FOR CL-DRIVE BINARY CLASSIFICATION TASKS

Setup Models Accuracy (%) | Fl-score (%)
RF [9] 79.34 76.27
XGB [9] 82.95 81.25
ResNet [9] 64.49 62.14
10-fold CV UniPhyNet [9] 79.33 79.24
Transformer-based [8] 83.54 85.96
Ours 85.69 85.70
RF [9] 65.76 56.84
XGB [9] 66.61 60.53
ResNet [9] 63.99 56.73
LOSO UniPhyNet [9] 73.61 74,06
Transformer-based [8] 65.15 66.74
Ours 76.26 76.55
TABLE V

COMPARISON OF MODEL CLASSIFICATION PERFORMANCE BASED ON EEG
AND ECG MODALITIES FOR CL-DRIVE TERNARY CLASSIFICATION TASKS

Setup Models Accuracy (%) | Fl-score (%)
RF [9] 68.41 68.42
XGB [9] 70.78 71.01
ResNet [9] 56.56 50.09
10-fold CV UniPhyNet [9] 73.60 378
Transformer-based [8] 75.57 75.48
Ours 78.79 78.77
RF [9] 40.15 37.54
XGB [9] 40.06 38.11
ResNet [9] 60.36 47.58
LOSO UniPhyNet [9] 62.64 62.02
Transformer-based [8] 61.81 61.79
Ours 63.68 63.86

C. Ablation Study

An ablation study was conducted to investigate the contri-
bution of each component to the proposed fusion framework.
Specifically, we examined four configurations: (i) a baseline
feature-level fusion model without attention, (ii) a variant

incorporating only self-attention, (iii) a variant incorporating
only cross attention, and (iv) a full model that integrates both
cross- and self-attention. This analysis allowed us to determine
the relative importance of attentional mechanisms in enhancing
multimodal feature integration.

The performances of these models were evaluated in terms
of accuracy under a 10-fold CV setting, with results presented
in Table VI. The model incorporating both self-attention
and cross-attention achieved the best performance in both
binary and ternary classification tasks. This improvement
is attributed to the model’s ability to refine intra-modality
structures and enhance feature representations through self-
attention, whereas cross-attention enables effective informa-
tion exchange between modalities and reinforces complemen-
tary patterns across physiological signals.

TABLE VI
PERFORMANCE COMPARISON OF EEG AND ECG MODALITY FUSION
STRATEGIES IN A 10-FOLD CROSS-VALIDATION SETUP

Setup Fusion Strategy Accuracy (%)
Simple feature-level 82.75
Binary Self-Attention—based 81.66
classification Cross-Attention—based 83.50
Self- and Cross-Attention—based 85.69
Simple feature-level 77.78
Ternary Self-Attention—based 7792
classification Cross-Attention—based 78.29
Self- and Cross-Attention—based 78.79

V. CONCLUSION

In this study, we present an efficient modality fusion frame-
work for driver cognitive load classification that integrates
multiple physiological modalities to capture a comprehensive
understanding of the driver’s state. Self-attention is applied
within each modality to extract refined features, while cross-
attention facilitates complementary inter-modality interactions
during classification. Comparative evaluations against mul-
tiple baseline models demonstrate that the proposed ap-
proach achieves state-of-the-art performance in both binary
and ternary cognitive load classifications. This framework
shows strong potential for enhancing autonomous driving
systems through accurate monitoring of drivers’ states and
timely intervention, as well as advancing the development of
Brain—Computer interface systems.
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