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Abstract—Diffusion models have attracted significant attention
not only for image synthesis and editing, but also for style
transfer. However, diffusion-based style transfer often produces
sharp images, yet the stochasticity in sampling can perturb
spatial layouts, causing structural drift across denoising steps.
Additional tuning can mitigate this issue, yet diffusion models
contain many parameters and both full training and test-time
adaptation impose substantial computational cost. We introduce
a training-free dual classifier-free guidance strategy that balances
content and style objectives during sampling. We further show
that pyramidal composition in latent space yields strong content
preservation while maintaining low-frequency geometry. Our
approach requires no parameter updates and remains compatible
with off-the-shelf backbones.

Index Terms—style transfer, artistic synthesis, diffusion models

I. INTRODUCTION

Diffusion models [1], [2] have rapidly become a milestone
for image synthesis and editing tasks. Their iterative denoising
procedure supports fine control over image appearance and
enables high perceptual fidelity for complex concepts. These
strengths have renewed interest in style transfer, where the
goal is to render a content image in the appearance of a
target style while preserving the underlying content. Despite
these advances, diffusion-based style transfer still struggles
with content preservation. During the reverse process of dif-
fusion, excessive style guidance can overwhelm the structural
guidance and cause the collapse of the target content image.
Therefore, achieving a balance between content preservation
and style strength is crucial in diffusion-based style transfer
to produce high-quality, aesthetically pleasing results.

Modern pipelines perform diffusion in latent space for
computational efficiency [2], which makes explicit geometric
manipulation difficult. Because direct pixel-space operations
do not translate cleanly to the latent representation, therefore
this choice mainly limits the practicality of applying explicit
geometric controls during sampling. As a result, many meth-
ods avoid explicit geometric operations and instead inject
style into the cross-attention layers of architectures [3]-[5],
leverage auxiliary modules [6]-[9] to encode style or content,
or resort to test-time optimization [10], [11]. Additionally,
several studies have explored inversion-based [12]-[14] edit-
ing. Methods such as DDIM inversion [12] reconstruct a
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Fig. 1. (Left) Example reference image for style. (Right) Example reference
image for content.

deterministic denoising trajectory that reproduces the input
image, after which controlled edits are applied along that path
to preserve high content fidelity.

Attention injection methods manipulate cross- or self-
attention to import style features from a reference, which is
simple and often training free, but provides only indirect con-
trol over geometry. Auxiliary modules encode style or enforce
structure using adapters or control branches, which reduces
trial and error but requires additional training, annotations, and
compute, and may generalize poorly across styles. Inversion-
based editing reconstructs a trajectory that reproduces the
input image and then applies edits along that path to preserve
content fidelity, yet most formulations assume deterministic
sampling and become sensitive to noise schedules when used
with stochastic samplers, which calls for extra design such as
noise recovery and path consistency. Test-time optimization
adapts sampling to each input by solving an objective during
generation, which can improve faithfulness at the cost of per-
image latency.

Therefore, we introduce a training-free dual classifier-free
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guidance strategy that separates content preservation from
style induction and balances the two during sampling. In
parallel, we perform pyramidal composition in latent space
so that low-frequency geometry is preserved while high-
frequency bands carry style details. Our method requires no
parameter updates or auxiliary networks, and operates with
off-the-shelf backbones.

II. METHOD

Classifier-free guidance (CFG) [15] for text-to-image diffu-
sion is defined as follows:

Eo(xt,c) = eg(xs, @) + w(eg(as, ¢) — eg(as, @), (1)

where x; is the noisy latent at timestep ¢, ¢(-, -) denotes the
predicted noise under the given condition, c is the text condi-
tion, & is the null condition for the unconditional guidance,
and w > 1 is the guidance scale that controls the strength of
conditioning.

A. Dual Classifier-Free Guidance

A diffusion model can produce a predicted noise €y for a
given noisy latent z; under text condition c. Hence, for two
text embeddings that represent content and style, we can obtain
two conditional predictions €qon := €¢(Z¢, Ccon) and egy =
€9(xt, Csty). As a naive idea, we can treat each conditional
prediction as a direction from the unconditional prediction and
linearly combine them at every timestep.

é = Euc + wcon(gcon - Euc) + wsty(gsty - 5uc)> (2)

where £ is the merged prediction, ¢,. the unconditional
prediction, con the conditional prediction for content, ey
the conditional prediction for style, wc,, the guidance scale
for content, and wy, the guidance scale for style, respectively.
As shown in Fig. 1, the two reference images in style transfer
often have markedly different spatial layouts. In such cases, a
naive interpolation of the two conditions becomes ambiguous
about which geometry to follow, which makes it difficult to
preserve the layout of the content reference image.

B. Latent Pyramids

Although the latent representation is not identical to pixel
space, it still retains much of the coarse scene geometry.
Building on this observation, we perform a pyramid decom-
position of the predicted noise £4(x¢,c¢) in latent space and
carry out level-wise fusion: we anchor global content with
the downsampled (low-frequency) levels, while the higher-
resolution levels convey stylistic details. Given an L-level
pyramid, we construct the following laplacian pyramid:

e®) = D () (DM (D)), k=0,...,L—1 (L >2),

3)
where D is the downsampling operation by a factor of 2, U
the upsampling, k the pyramid level, and £(©) := g4(xy, ¢).

To ensure stable composition across K levels, we compute a
gating scale for each level as:

k
g((:(ljr)lzL_la kZO,...,L—l (L22)a (4)
B =1-g"

where g.o, is the gating scale for content, and gs;, for style.
Finally, dual CFG scales are computed as follows:
1 1

~(k ~(k k
wé) - iwcongglgzm wgq) = iwstygity)- (6)

Then, (2) can be modified:

éW =) + 0 (el) — e W) + iy () — ). )

con uc

Subsequently, all £(*) components are upsampled back to the
original resolution and then summed.

C. Gate Scheduling

During sampling, diffusion models tend to establish coarse
global content at early timesteps and progressively refine
local details at later ones. Motivated by this observation, we
modulate the contribution of each pyramid level to preserve
global content. Let T denote the total number of sampling
steps and let ¢ € {0,...,7 — 1} be the current timestep,
scheduling factors are computed as:

4
T-1
where 7y is a damping factor. we set v to 1.5. Then (6) can be
modified as follows:

'JJ(L]C) = )\Lwcong(k) wg[c)

con?’

A =(1—

), Am=1-2Xg, ®)

= Agwsygty. (9

III. EXPERIMENTAL RESULTS

Given a content prompt and a style prompt, we first generate
reference images I.on, and Iy, by applying standard CFG to
each prompt separately. To this end, we used ChatGPT [16] to
generate 36 style prompts and 39 content prompts. By pairing
each of the 36 style prompts with each of the 39 content
prompts, we obtain 36 x 39 = 1,404 prompt pairs and we
generate one image per pair conditioned on both prompts
for evaluation. We synthesize 1,404 images conditioned on
both prompts utilizing three methods: dual CFG (DCFG),
pyramidal dual CFG (PDCFG), and scheduled pyramidal dual
CFG (SPDCFG). For evaluation, we use the style reference
Iy to compute Art-FID [17] as a measure of stylistic fidelity,
and the content reference I, to compute LPIPS as a measure
of structural consistency. We employed DreamShaper 8 [18]
for this experiments. Qualitative and quantitative results are
presented in Fig. 2 and TABLE I, respectively. For DCFG,
although style is captured most faithfully, global structure is
not explicitly preserved. Because frequency separation is not
considered in the latent space, the style prompt exerts a strong
influence on the overall layout. In our experiments we observe
that pyramid guidance can maintain global structure as shown
in Fig. 2. Especially, SPDCFG preserved the original layout
best. This trend is also evident in TABLE I.
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Fig. 2. Qualitative results on 1,404 prompt pairs.

IV. CONCLUSION pyramid that decomposes the predicted noise and schedules

the contribution of each level during sampling. This design

In this work we addressed training-free stylization with a preserves g]oba] structure while injecting high-frequency style,
single pre-trained diffusion model. We introduced a latent
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TABLE I
GENERATION RESULTS WITH DUAL-PROMPT CLASSIFIER-FREE GUIDANCE.

BOLD: BEST.
Method Art-FID | LPIPS |
DCFG (II-A) 5.5678 0.6487
PDCFG (II-B) 7.8932 0.5353
SPDCFG (II-C)  7.2813 0.4812

and it integrates with off-the-shelf backbones without pa-
rameter updates. Qualitative and quantitative results indicate
improved structural fidelity at competitive visual quality, and
the proposed SPDCFG preserves the original layout most
effectively. However, these approaches are limited by the cov-
erage of the pre-trained model, since the model should observe
the target style and objects. In addition, When the style and
content are extremely mismatched or when the style is highly
abstract relative to photorealistic content, stylization becomes
unreliable. In this work, we used hand-crafted manipulation
approaches for diffusion guidance. We expect future works to
address these constraints with more adaptive schemes.
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