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Abstract—Semiconductor manufacturing increasingly relies
on high-capacity and interference-free communication
backbones to support automation and data-intensive processes.
In semiconductor fabs, free-space optical communication
(FSOC) can deliver high-throughput and interference-free
connectivity. However, frequent line-of-sight interruptions from
moving overhead hoist transport (OHT) vehicles and sudden
burst traffic significantly threaten link stability. This paper
proposes a reinforcement learning (RL)-based adaptive
scheduling framework for full-duplex multi-hop FSOC
networks that explicitly models and mitigates blocking events. A
discrete-event simulation environment reflecting realistic fab
parameters, including OHT mobility, FSOC terminal density,
burst arrivals, and reconfiguration delays, was developed to
evaluate performance. Results show that the RL-based
approach significantly improves average throughput while
reducing drop rates compared to static and heuristic baselines.
These findings confirm the effectiveness of learning-driven
scheduling in ensuring both capacity and reliability, providing
a practical pathway toward resilient FSOC backbones in next-
generation semiconductor fabs.

Keywords—Adaptive scheduling, Blocking events, Free-space
optical communication (FSOC), Multi-hop networking, Overhead
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semiconductor manufacturing

[. INTRODUCTION

Modern semiconductor fabs demand ultra-precise
inspection systems, continuous process optimization, and
large-scale data transfers across production lines, pushing
communication infrastructures to their limits. As next-
generation semiconductor fabs adopt highly automated and
intelligent systems such as overhead hoist transport (OHT)
platforms and data-intensive inspection equipment, the
limitations of traditional wired and radio frequency (RF)-
based infrastructures are becoming increasingly evident.
Conventional RF and wired infrastructures face critical
drawbacks such as electromagnetic interference (EMI)
vulnerability, inflexible installation requirements, escalating
costs, and limited scalability for future manufacturing
demands. Designing a next-generation communication
backbone that simultaneously ensures high throughput, low
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Fig. 1. Concept of RL-based adaptive scheduling in a full-
duplex multi-hop FSOC network under OHT blocking events
in smart semiconductor manufacturing.

latency, EMI immunity, and flexible reconfiguration is
therefore a critical challenge [1].

Free-space optical communication (FSOC) has gained
attention as a viable alternative, offering multi-Gbps data rates,
resilience against EMI, unlicensed operation, and flexible
topology reconfiguration suitable for dynamic fab
environments [2], [3], [4]. However, operating FSOC links in
dynamic semiconductor fabs is far from straightforward.
Moving OHT systems frequently obstruct line-of-sight (LOS)
paths, creating blocking events that degrade link stability.
Moreover, inspection and control traffic exhibits burst
characteristics, resulting in sudden high bandwidth demands.
Conventional static or rule-based scheduling approaches
struggle to cope with such uncertainties and dynamics.

To address these limitations, this paper proposes a
reinforcement learning (RL)-based adaptive scheduling
framework tailored to multi-hop FSOC networks in
semiconductor manufacturing environments [5], [6]. The
proposed approach explicitly incorporates OHT-induced
blocking events into the decision-making process of the RL
agent, enabling real-time relay path selection and link
reconfiguration. As a result, the framework ensures stable and
high-capacity transmission even under frequent blocking
conditions.
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The main contribution of this paper are summarized as
follows:

e FSOC network modeling with explicit consideration of
OHT-induced blocking events

e Design of an RL-based adaptive scheduling algorithm
for multi-hop FSOC

e Simulation-based evaluation demonstrating improved
throughput and reduced drop rate

II. PROPOSED MODEL

A. System Overview

The proposed model is built upon a multi-hop full-duplex
FSOC network that explicitly considers blocking events
caused by OHT vehicles in next-generation semiconductor
manufacturing environments. Fig. 1 illustrates the conceptual
architecture of the proposed system. FSOC terminals are
deployed above the production line and form a flexible multi-
hop relay topology. OHT vehicles often obstruct LOS links,
leading to abrupt disruptions in ongoing transmissions. To
mitigate these interruptions, the RL-based scheduler predicts
mobility trends and adjusts relay routes in real time while
adapting to burst traffic conditions. Unlike conventional static
scheduling, where blocked bursts are entirely lost, or heuristic
scheduling, which relies on simple rule-based rerouting, the
proposed approach enables intelligent prediction and
mitigation of blocking events. This ensures stable, high-
throughput, and low-latency connectivity, providing a robust
and interference-free communication backbone for smart
semiconductor manufacturing.

B. Simulation Parameters

Table I summarizes the simulation parameters that
characterize the operating environment and evaluation setup.
Each experiment is performed over a total duration 7;,, where
the system consists of Nrsoc FSOC terminals forming a multi-
hop relay backbone with up to Ny, stages, and Noxr overhead
hoist transport vehicles moving at an average speed Vonur. At
every scheduling interval, the agent observes the positions and
velocities of OHTs, LOS conditions between terminals, and
the state of traffic queues. Traffic is modeled as bursts of size
Bupurst generated at an average frequency Fju. Network control
actions, including link establishment, relay assignment, and
bandwidth allocation, are constrained by the maximum link
throughput R, and reconfiguration latency Tjm. Service
interruptions exceeding the drop threshold g, are counted as
drop events. All parameters have been carefully selected to
reflect real-world semiconductor manufacturing
environments, capturing OHT mobility patterns, FSOC
terminal density, bursty inspection/control traffic, and realistic
relay reconfiguration delays. Consequently, the defined model
provides a reliable abstraction for deployment-oriented
evaluations of next-generation fab networks.

C. Algorithm Framework

Algorithm 1 provides a step-by-step description of the
proposed RL-based adaptive scheduling scheme. At each
scheduling epoch, the agent interacts with the FSOC
environment through the following sequence:

e The agent collects a comprehensive state vector
encompassing OHT locations and speeds, current
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TABLE I. SIMULATION PARAMETERS

Parameter Symbol Value Description
S1m1'11at10n T 30 min Total expferlment
Time duration
OHT Nodes Nour 20 Number of OHT
100 m Average speed of
OHT Speed Vour Jmin OHT
FSOC N, 16 Number of FSOC
Terminals rsoc terminals
Number of multi-hop
Relay Hops Niop 3 stages
Lmk Setup Tin 30 ms Reconfiguration/repair
Time latency
Traffic Control/inspection
Burst Size Bours 10GB burst size
Burst 1-60 Average inter-burst
F burst . .
Frequency /min interval
Max. Link Single FSOC link
Capacity R 10 Gbps throughput
Drop Minimum outage to
Threshold Oarop 30 ms count as drop event

relay topology, LOS availability, and instantaneous
traffic load.

State Observation: The system state S; captures the
instantaneous dynamics of the environment,
including OHT positions and velocities (Vonr), the
FSOC relay topology up to N, stages, the LOS
blocking matrix, and the current buffer occupancy g.

Action Selection: Based on the scheduling policy m,
the agent determines an action 4,. For the RL policy,
actions are chosen via an e-greedy exploration of the
Q-function Q(S,, a). The heuristic policy selects relay
paths through a predefined rerouting rule, while the
static policy maintains fixed link assignments.

Action Execution: The chosen action is enforced on
the FSOC network. Reconfiguration events incur a
setup delay Tim. Whenever an OHT-induced
blockage lasts longer than the predefined threshold
Ouarop, the incident is registered as a link outage.

Reward Computation: For RL, the agent evaluates
a composite reward function that balances throughput,
latency, drop events, and reconfiguration costs:

Rt: aTnet(t) - ,BDavg(t) _Vdmp-Ldrop(t) _5Cconﬁg(t),

where T,.(f) is the instantaneous throughput
constrained by Ruax, Dag(f) denotes the average
latency, Lap(f) indicates drop occurrences, and
Ceonfig(t) represents the cost of reconfiguration. The
weights a, f, yarp, and o reflect the trade-offs among
competing performance objectives.

Experience Storage and Q-Network Update: Each
transition S, 4, R;, Si+; is appended to the replay
buffer B. The Q-network parameters are then updated
according to the classical Q-learning rule:

065, A) = 05 A) + 1 [Re + ymax Q(See ' -
a’

Q6. 40)].

where 7 is the learning rate and y is the discount
factor that determines the weight of future rewards.



Algorithm 1 RL-based Adaptive Scheduling for
Multi-Hop FSOC with Blocking Event
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InplIt: Tvim, NOHT, NFSOCy VOHT, Nh(}pg Tlinky Bhurst, Fhulﬁ\‘l‘y
Rimax, Oarop, Policy T € static, heuristic, RL,
Buffer size L, RL hyperparameters, Reward
Weights, Blocking model constant: k> 0
(Poisson-derived)
Output: Scheduling actions 4, Updated Q-network
parameters, Performance metrics: average
throughput T, drop rate Lo
Initialization:
Initialize Q-network, replay buffer B « [ ]
Set ¢t « 0; delivered « 0; demanded « O;
drops < 0; ¢ < 0 // buffer occupancy ¢
while t < T, do
Burst arrival:
t «t+ At, At~Exp(A), X = Fpyps: /60
demanded < demanded + By,
bursts « bursts + 1
Buffer admission:
if ¢ + By < L then g < q + Bpust
else drops < drops + 1
end if
Compute blocking probability:
Pprock =1 — exp(—kFpyrst)
blocked ~ Bernoulli(Pppci)
Observe state:
S; = (blocked, relay depth, latency, q)
Select action:
if m = RL then
Choose 4, using e-greedy over Q(S;, a)
else if ™ = heuristic then
Choose reroute path based on heuristic rule
else if 7 = static then
Use fixed link assignment
end if
Transmission reaction:
if blocked = 1 then
if reroute attempt fails (Pyg;;) then
drops < drops + 1
else
Transmit min(q, Ry - At); update g
end if
else
Transmit min(q, R,qy - At); update g
end if
Reward calculation (if RL):
R= 0Tyedt) = PDave(t) —YaropLarop(t) —0Coonfie(t)
where:
Ted(t): Actual network throughput (< R,,05)
Larop(t): Incremented if link outage > 64,4y
Dae(?): Average latency
Ceonfig(f): Reconfiguration cost (77inx)
Q-network update (if RL):
Store (S, 4s, Ry, Si+1) in buffer B
Perform Q-learning update
end while
Compute results:
T = delivered /Ty,
Lyyop = drops/bursts
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By embedding the system parameters of Table I (e.g., Noxr,
NFS()C, VOHT, Bburxt, Fburxt, Rma)r, Tlink, edrop) diI‘CCﬂy into the State,
action, and reward design, the framework enables robust and
reproducible optimization. This integration ensures that the
RL agent progressively learns to mitigate blocking events and
buffer overflows, thereby achieving superior throughput and
reduced drop rates compared to static or heuristic scheduling
baselines.

III. PERFORMANCE EVALUATION

A. Simulation Setup

To assess the effectiveness of the proposed RL-based
adaptive scheduling framework, a discrete-event simulation
environment was developed based on the parameters
summarized in Table I. The total simulation time was set to 30
minutes (7yin), during which 20 OHT vehicles (Norr) moved
along the production line at an average speed of 100 m/min
(Vonrr). Each OHT acted as a dynamic blocking obstacle for
FSOC links, introducing stochastic LOS blocking events that
directly affect communication reliability. A total of 16 FSOC
terminals (Nrsoc) were deployed across the fab floor, enabling
up to three relay stages (M) to establish multi-hop
connectivity when direct links were unavailable. The
maximum throughput of a single FSOC link was constrained
to 10 Gbps (Rma), while link setup and reconfiguration
required an average latency of 30 ms (7). Traffic was
modeled as burst arrivals of 10 GB (Bpus) With a frequency
ranging from 1 to 60 events per minute (Fpus). Any service
interruption exceeding 50 ms (64-p) Was counted as a drop
event. To ensure statistical robustness, multiple simulation
runs were conducted with independent random seeds.
Performance was evaluated in terms of average throughput
and drop rate under three scheduling policies: static, heuristic,
and RL-based.

B. Throughput Performance

The throughput performance shown in Fig. 2 was obtained
through a discrete-event simulation framework. For each burst
frequency ranging from 1 to 60 events per minute, multiple
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Fig. 2. Average throughput performance under varying burst
frequencies for static, heuristic, and RL-based scheduling
policies.



independent simulation runs were conducted to capture
statistical variability. Three scheduling policies were
implemented: a static baseline, a heuristic rerouting scheme,
and the proposed RL-based adaptive scheduling. In the static
scheme, bursts were either successfully transmitted or
dropped depending on blocking events without any adaptive
mechanism. The heuristic approach attempted rerouting with
a fixed probability of success, reflecting limited adaptability.
In contrast, the RL-based agent employed a Q-learning
framework, selecting actions based on an e-greedy exploration
strategy, and continuously updating its Q-network through
temporal-difference learning. Throughput in each run was
computed as the ratio of successfully delivered burst traffic to
the total offered load, normalized with respect to the
maximum FSOC link capacity, which was fixed at Ry of 10
Gbps. The final performance curves illustrate the average
throughput across 30 simulation runs, and standard deviation
error bars are included to demonstrate statistical confidence.

C. Drop Rate Analysis

Fig. 3 illustrates the drop rate performance of the three
scheduling policies under varying burst frequencies. The static
scheme exhibits a rapid increase in drop ratio, exceeding 80%
when the burst frequency reaches 60 events per minute. This
sharp degradation arises from its inability to adapt to frequent
blocking events, leading to buffer overflows and persistent
link outages. The heuristic scheme demonstrates improved
resilience by reducing the drop rate significantly compared to
the static baseline, yet the ratio still climbs steadily with higher
traffic intensity, reflecting its limited adaptability under
dynamic fab conditions. In contrast, the RL-based policy
maintains a consistently low drop rate, remaining close to zero
even under the most demanding traffic conditions. This
outcome highlights the ability of reinforcement learning to
anticipate and mitigate blocking-induced disruptions by
leveraging its learned rerouting strategies. Overall, these
results confirm that the RL-based scheduling framework not
only sustains high throughput (Fig. 2) but also ensures
reliability by effectively suppressing drop events across a
wide range of operating conditions.

D. Discussion

The performance trends observed in Figs. 2 and 3 provide
several key insights. First, the static scheduling scheme suffers
a severe throughput collapse as burst frequency increases,
confirming its inability to cope with frequent blocking events
in dynamic fab environments. The heuristic approach
mitigates this degradation to some extent by attempting
rerouting, but its reliance on a fixed success probability results
in limited performance gains under highly variable traffic and
mobility conditions. In contrast, the RL-based policy
consistently  sustains near-optimal throughput while
maintaining lower drop rates, demonstrating its ability to learn
and exploit environment-specific blocking patterns. These
findings highlight the critical role of adaptive, learning-driven
strategies in ensuring reliable FSOC backbone performance
for next-generation semiconductor manufacturing. At the
same time, the computational overhead and convergence time
of RL remain important factors to be addressed in real-time
deployment, suggesting directions for lightweight or
hardware-assisted implementations. It should be noted that
average throughput and drop rate, although displaying inverse
trends in the figures, represent complementary aspects of
network performance rather than interchangeable measures.
Throughput characterizes the effective data delivery capacity
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Fig. 3. Drop rate performance under varying burst
frequencies for static, heuristic, and RL-based scheduling
policies.

of the FSOC backbone, incorporating the impact of successful
transmissions, latency, reconfiguration delays, and bandwidth
utilization. By contrast, drop rate quantifies the fraction of
burst traffic lost due to blocking or buffer overflow, serving as
a direct indicator of link reliability. While an increase in drop
rate inevitably reduces throughput, the two metrics emphasize
different dimensions of performance. Evaluating them jointly
provides a more comprehensive assessment, demonstrating
that the proposed RL-based scheduling framework can
simultaneously sustain high capacity and ensure robust
reliability under dynamic semiconductor fab conditions.

IV. CONCLUSION

This study introduces a blocking-aware RL scheduling
strategy for full-duplex multi-hop FSOC systems, enhancing
throughput and reliability in highly dynamic semiconductor
manufacturing settings. Unlike conventional scheduling
schemes, the proposed framework explicitly models and
mitigates blocking events caused by OHT movements,
enabling more resilient and reliable link maintenance in highly
dynamic fab conditions. Through discrete-event simulations,
the framework is shown to significantly improve average
throughput while simultaneously reducing drop rates
compared to static and heuristic baselines. These results
confirm the effectiveness of reinforcement learning in
adapting to blocking events and traffic variability, thereby
ensuring both high capacity and robust reliability in FSOC
backbones. Future work will focus on reducing the training
overhead and convergence time of RL algorithms, as well as
developing lightweight and hardware-assisted
implementations to ensure practical real-time deployment in
next-generation fabs.
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