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Abstract—Semiconductor manufacturing increasingly relies 
on high-capacity and interference-free communication 
backbones to support automation and data-intensive processes. 
In semiconductor fabs, free-space optical communication 
(FSOC) can deliver high-throughput and interference-free 
connectivity. However, frequent line-of-sight interruptions from 
moving overhead hoist transport (OHT) vehicles and sudden 
burst traffic significantly threaten link stability. This paper 
proposes a reinforcement learning (RL)-based adaptive 
scheduling framework for full-duplex multi-hop FSOC 
networks that explicitly models and mitigates blocking events. A 
discrete-event simulation environment reflecting realistic fab 
parameters, including OHT mobility, FSOC terminal density, 
burst arrivals, and reconfiguration delays, was developed to 
evaluate performance. Results show that the RL-based 
approach significantly improves average throughput while 
reducing drop rates compared to static and heuristic baselines. 
These findings confirm the effectiveness of learning-driven 
scheduling in ensuring both capacity and reliability, providing 
a practical pathway toward resilient FSOC backbones in next-
generation semiconductor fabs. 

Keywords—Adaptive scheduling, Blocking events, Free-space 
optical communication (FSOC), Multi-hop networking, Overhead 
hoist transport (OHT), Reinforcement learning (RL), Smart 
semiconductor manufacturing 

 

I. INTRODUCTION  
Modern semiconductor fabs demand ultra-precise 

inspection systems, continuous process optimization, and 
large-scale data transfers across production lines, pushing 
communication infrastructures to their limits. As next-
generation semiconductor fabs adopt highly automated and 
intelligent systems such as overhead hoist transport (OHT) 
platforms and data-intensive inspection equipment, the 
limitations of traditional wired and radio frequency (RF)-
based infrastructures are becoming increasingly evident. 
Conventional RF and wired infrastructures face critical 
drawbacks such as electromagnetic interference (EMI) 
vulnerability, inflexible installation requirements, escalating 
costs, and limited scalability for future manufacturing 
demands. Designing a next-generation communication 
backbone that simultaneously ensures high throughput, low 

latency, EMI immunity, and flexible reconfiguration is 
therefore a critical challenge [1]. 

Free-space optical communication (FSOC) has gained 
attention as a viable alternative, offering multi-Gbps data rates, 
resilience against EMI, unlicensed operation, and flexible 
topology reconfiguration suitable for dynamic fab 
environments [2], [3], [4]. However, operating FSOC links in 
dynamic semiconductor fabs is far from straightforward. 
Moving OHT systems frequently obstruct line-of-sight (LOS) 
paths, creating blocking events that degrade link stability. 
Moreover, inspection and control traffic exhibits burst 
characteristics, resulting in sudden high bandwidth demands. 
Conventional static or rule-based scheduling approaches 
struggle to cope with such uncertainties and dynamics. 

To address these limitations, this paper proposes a 
reinforcement learning (RL)-based adaptive scheduling 
framework tailored to multi-hop FSOC networks in 
semiconductor manufacturing environments [5], [6]. The 
proposed approach explicitly incorporates OHT-induced 
blocking events into the decision-making process of the RL 
agent, enabling real-time relay path selection and link 
reconfiguration. As a result, the framework ensures stable and 
high-capacity transmission even under frequent blocking 
conditions. 

 
Fig. 1. Concept of RL-based adaptive scheduling in a full-
duplex multi-hop FSOC network under OHT blocking events 
in smart semiconductor manufacturing. 
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The main contribution of this paper are summarized as 
follows: 

• FSOC network modeling with explicit consideration of 
OHT-induced blocking events 

• Design of an RL-based adaptive scheduling algorithm 
for multi-hop FSOC 

• Simulation-based evaluation demonstrating improved 
throughput and reduced drop rate 

 

II. PROPOSED MODEL 

A. System Overview 
The proposed model is built upon a multi-hop full-duplex 

FSOC network that explicitly considers blocking events 
caused by OHT vehicles in next-generation semiconductor 
manufacturing environments. Fig. 1 illustrates the conceptual 
architecture of the proposed system. FSOC terminals are 
deployed above the production line and form a flexible multi-
hop relay topology. OHT vehicles often obstruct LOS links, 
leading to abrupt disruptions in ongoing transmissions. To 
mitigate these interruptions, the RL-based scheduler predicts 
mobility trends and adjusts relay routes in real time while 
adapting to burst traffic conditions. Unlike conventional static 
scheduling, where blocked bursts are entirely lost, or heuristic 
scheduling, which relies on simple rule-based rerouting, the 
proposed approach enables intelligent prediction and 
mitigation of blocking events. This ensures stable, high-
throughput, and low-latency connectivity, providing a robust 
and interference-free communication backbone for smart 
semiconductor manufacturing. 

B. Simulation Parameters 
Table I summarizes the simulation parameters that 

characterize the operating environment and evaluation setup. 
Each experiment is performed over a total duration Tsim, where 
the system consists of NFSOC FSOC terminals forming a multi-
hop relay backbone with up to Nhop stages, and NOHT overhead 
hoist transport vehicles moving at an average speed VOHT. At 
every scheduling interval, the agent observes the positions and 
velocities of OHTs, LOS conditions between terminals, and 
the state of traffic queues. Traffic is modeled as bursts of size 
Bburst generated at an average frequency Fburst. Network control 
actions, including link establishment, relay assignment, and 
bandwidth allocation, are constrained by the maximum link 
throughput Rmax and reconfiguration latency Tlink. Service 
interruptions exceeding the drop threshold θdrop are counted as 
drop events. All parameters have been carefully selected to 
reflect real-world semiconductor manufacturing 
environments, capturing OHT mobility patterns, FSOC 
terminal density, bursty inspection/control traffic, and realistic 
relay reconfiguration delays. Consequently, the defined model 
provides a reliable abstraction for deployment-oriented 
evaluations of next-generation fab networks. 

C. Algorithm Framework 
Algorithm 1 provides a step-by-step description of the 

proposed RL-based adaptive scheduling scheme. At each 
scheduling epoch, the agent interacts with the FSOC 
environment through the following sequence: 

• The agent collects a comprehensive state vector 
encompassing OHT locations and speeds, current 

relay topology, LOS availability, and instantaneous 
traffic load. 

• State Observation: The system state St captures the 
instantaneous dynamics of the environment, 
including OHT positions and velocities (VOHT), the 
FSOC relay topology up to Nhop stages, the LOS 
blocking matrix, and the current buffer occupancy q. 

• Action Selection: Based on the scheduling policy 𝜋𝜋, 
the agent determines an action At. For the RL policy, 
actions are chosen via an ϵ-greedy exploration of the 
Q-function Q(St, a). The heuristic policy selects relay 
paths through a predefined rerouting rule, while the 
static policy maintains fixed link assignments. 

• Action Execution: The chosen action is enforced on 
the FSOC network. Reconfiguration events incur a 
setup delay Tlink. Whenever an OHT-induced 
blockage lasts longer than the predefined threshold 
θdrop, the incident is registered as a link outage. 

• Reward Computation: For RL, the agent evaluates 
a composite reward function that balances throughput, 
latency, drop events, and reconfiguration costs: 

Rt= αTnet(t) – βDavg(t) −γdropLdrop(t) −δCconfig(t), 

where Tnet(t) is the instantaneous throughput 
constrained by Rmax, Davg(t) denotes the average 
latency, Ldrop(t) indicates drop occurrences, and 
Cconfig(t) represents the cost of reconfiguration. The 
weights α, β, γdrop, and δ reflect the trade-offs among 
competing performance objectives. 

• Experience Storage and Q-Network Update: Each 
transition St, At, Rt, St+1 is appended to the replay 
buffer ℬ. The Q-network parameters are then updated 
according to the classical Q-learning rule: 

Q(St, At) ←  Q(St, At) + 𝜂𝜂 [𝑅𝑅𝑡𝑡 + 𝛾𝛾max
𝑎𝑎′

𝑄𝑄(𝑆𝑆𝑡𝑡+1, 𝑎𝑎′ −

𝑄𝑄(𝑆𝑆𝑡𝑡, 𝐴𝐴𝑡𝑡))] , 

where 𝜂𝜂  is the learning rate and 𝛾𝛾  is the discount 
factor that determines the weight of future rewards. 

TABLE I.   SIMULATION PARAMETERS 

Parameter Symbol Value Description 

Simulation 
Time Tsim 30 min Total experiment 

duration 
OHT Nodes NOHT 20 Number of OHT 

OHT Speed VOHT 
100 m 
/min 

Average speed of 
OHT 

FSOC 
Terminals NFSOC 16 Number of FSOC 

terminals 

Relay Hops Nhop 3 Number of multi-hop 
stages 

Link Setup 
Time Tlink 30 ms Reconfiguration/repair 

latency 
Traffic 

Burst Size Bburst 10 GB Control/inspection 
burst size 

Burst 
Frequency Fburst 

1-60 
/min 

Average inter-burst 
interval 

Max. Link 
Capacity Rmax 10 Gbps Single FSOC link 

throughput 
Drop 

Threshold θdrop 50 ms Minimum outage to 
count as drop event 
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By embedding the system parameters of Table I (e.g., NOHT, 
NFSOC, VOHT, Bburst, Fburst, Rmax, Tlink, θdrop) directly into the state, 
action, and reward design, the framework enables robust and 
reproducible optimization. This integration ensures that the 
RL agent progressively learns to mitigate blocking events and 
buffer overflows, thereby achieving superior throughput and 
reduced drop rates compared to static or heuristic scheduling 
baselines. 

 

III. PERFORMANCE EVALUATION 

A. Simulation Setup 
To assess the effectiveness of the proposed RL-based 

adaptive scheduling framework, a discrete-event simulation 
environment was developed based on the parameters 
summarized in Table I. The total simulation time was set to 30 
minutes (Tsim), during which 20 OHT vehicles (NOHT) moved 
along the production line at an average speed of 100 m/min 
(VOHT). Each OHT acted as a dynamic blocking obstacle for 
FSOC links, introducing stochastic LOS blocking events that 
directly affect communication reliability. A total of 16 FSOC 
terminals (NFSOC) were deployed across the fab floor, enabling 
up to three relay stages (Nhop) to establish multi-hop 
connectivity when direct links were unavailable. The 
maximum throughput of a single FSOC link was constrained 
to 10 Gbps (Rmax), while link setup and reconfiguration 
required an average latency of 30 ms (Tlink). Traffic was 
modeled as burst arrivals of 10 GB (Bburst) with a frequency 
ranging from 1 to 60 events per minute (Fburst). Any service 
interruption exceeding 50 ms (θdrop) was counted as a drop 
event. To ensure statistical robustness, multiple simulation 
runs were conducted with independent random seeds. 
Performance was evaluated in terms of average throughput 
and drop rate under three scheduling policies: static, heuristic, 
and RL-based. 

B. Throughput Performance 
The throughput performance shown in Fig. 2 was obtained 

through a discrete-event simulation framework. For each burst 
frequency ranging from 1 to 60 events per minute, multiple 

Algorithm 1 RL-based Adaptive Scheduling for  
Multi-Hop FSOC with Blocking Event 

Input: Tsim, NOHT, NFSOC, VOHT, Nhop, Tlink, Bburst, Fburst,  
Rmax, θdrop, Policy 𝜋𝜋 ∈ 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠, ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒, 𝑅𝑅𝑅𝑅,  
Buffer size L, RL hyperparameters, Reward 
Weights, Blocking model constant: k > 0  

(Poisson-derived) 
Output:  Scheduling actions At, Updated Q-network 

 parameters, Performance metrics: average 
 throughput 𝑇̅𝑇, drop rate 𝐿̅𝐿𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 

1: Initialization:  
2:    Initialize Q-network, replay buffer  ℬ ← [ ] 
3:    Set t ← 0; delivered ← 0; demanded ← 0;  

drops ← 0; q ← 0        // buffer occupancy q 
4: while 𝑡𝑡 <  𝑇𝑇𝑠𝑠𝑠𝑠𝑠𝑠 𝐝𝐝𝐝𝐝 
5:    Burst arrival: 
6:     𝑡𝑡 ← 𝑡𝑡 + ∆𝑡𝑡, ∆𝑡𝑡~𝐸𝐸𝐸𝐸𝐸𝐸(𝜆𝜆), 𝜆𝜆 = 𝐹𝐹𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏/60 
7:    demanded ← demanded + Bburst;  

bursts ← bursts + 1 
8:    Buffer admission: 
9:    if q + Bburst ≤  𝐿𝐿 then q  ← q + Bburst 
10:    else drops ← drops + 1 
11:    end if   
12:    Compute blocking probability: 
13:    𝑃𝑃𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 = 1 − 𝑒𝑒𝑒𝑒𝑒𝑒(−𝑘𝑘𝐹𝐹𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏) 
14:    blocked ~ Bernoulli(𝑃𝑃𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏) 
15:    Observe state: 
16:    𝑆𝑆𝑡𝑡 = (𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏, 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑ℎ, 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙, 𝑞𝑞) 
17:    Select action:  
18:    if  𝜋𝜋 = 𝑅𝑅𝑅𝑅 then 
19:       Choose At using ϵ-greedy over Q(St, a) 
20:    else if  𝜋𝜋 = ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 tthheenn 
21:       Choose reroute path based on heuristic rule 
22:    else if  𝜋𝜋 = 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 tthheenn 
23:       Use fixed link assignment 
24:    end if 
25:    Transmission reaction: 
26:    if  𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 = 1 then 
27:       if reroute attempt fails (𝑃𝑃𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓) then 
28:          drops ← drops + 1 
29:       else 
30:          Transmit min(𝑞𝑞, 𝑅𝑅𝑚𝑚𝑚𝑚𝑚𝑚 ∙ ∆𝑡𝑡); update q 
31:       end if 
32:    else 
33:       Transmit min(𝑞𝑞, 𝑅𝑅𝑚𝑚𝑚𝑚𝑚𝑚 ∙ ∆𝑡𝑡); update q 
34:    end if 
35:    Reward calculation (if RL): 
36:    Rt= αTnet(t) – βDavg(t) −γdropLdrop(t) −δCconfig(t) 
37:    where: 
38:    Tnet(t): Actual network throughput (≤ 𝑅𝑅𝑚𝑚𝑚𝑚𝑚𝑚) 
39:    Ldrop(t): Incremented if link outage > 𝜃𝜃𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 
40:    Davg(t): Average latency 
41:    Cconfig(t): Reconfiguration cost (Tlink) 
42:    Q-network update (if RL): 
43:    Store (St, At, Rt, St+1) in buffer ℬ 
44:    Perform Q-learning update    
45: end while 
46: Compute results: 
47: 𝑇̅𝑇 = 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑/𝑇𝑇𝑠𝑠𝑠𝑠𝑠𝑠 
48: 𝐿̅𝐿𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 = 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑/𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 

 
Fig. 2. Average throughput performance under varying burst 
frequencies for static, heuristic, and RL-based scheduling 
policies. 
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independent simulation runs were conducted to capture 
statistical variability. Three scheduling policies were 
implemented: a static baseline, a heuristic rerouting scheme, 
and the proposed RL-based adaptive scheduling. In the static 
scheme, bursts were either successfully transmitted or 
dropped depending on blocking events without any adaptive 
mechanism. The heuristic approach attempted rerouting with 
a fixed probability of success, reflecting limited adaptability. 
In contrast, the RL-based agent employed a Q-learning 
framework, selecting actions based on an ϵ-greedy exploration 
strategy, and continuously updating its Q-network through 
temporal-difference learning. Throughput in each run was 
computed as the ratio of successfully delivered burst traffic to 
the total offered load, normalized with respect to the 
maximum FSOC link capacity, which was fixed at Rmax of 10 
Gbps. The final performance curves illustrate the average 
throughput across 30 simulation runs, and standard deviation 
error bars are included to demonstrate statistical confidence. 

C. Drop Rate Analysis 
Fig. 3 illustrates the drop rate performance of the three 

scheduling policies under varying burst frequencies. The static 
scheme exhibits a rapid increase in drop ratio, exceeding 80% 
when the burst frequency reaches 60 events per minute. This 
sharp degradation arises from its inability to adapt to frequent 
blocking events, leading to buffer overflows and persistent 
link outages. The heuristic scheme demonstrates improved 
resilience by reducing the drop rate significantly compared to 
the static baseline, yet the ratio still climbs steadily with higher 
traffic intensity, reflecting its limited adaptability under 
dynamic fab conditions. In contrast, the RL-based policy 
maintains a consistently low drop rate, remaining close to zero 
even under the most demanding traffic conditions. This 
outcome highlights the ability of reinforcement learning to 
anticipate and mitigate blocking-induced disruptions by 
leveraging its learned rerouting strategies. Overall, these 
results confirm that the RL-based scheduling framework not 
only sustains high throughput (Fig. 2) but also ensures 
reliability by effectively suppressing drop events across a 
wide range of operating conditions. 

D. Discussion 
The performance trends observed in Figs. 2 and 3 provide 

several key insights. First, the static scheduling scheme suffers 
a severe throughput collapse as burst frequency increases, 
confirming its inability to cope with frequent blocking events 
in dynamic fab environments. The heuristic approach 
mitigates this degradation to some extent by attempting 
rerouting, but its reliance on a fixed success probability results 
in limited performance gains under highly variable traffic and 
mobility conditions. In contrast, the RL-based policy 
consistently sustains near-optimal throughput while 
maintaining lower drop rates, demonstrating its ability to learn 
and exploit environment-specific blocking patterns. These 
findings highlight the critical role of adaptive, learning-driven 
strategies in ensuring reliable FSOC backbone performance 
for next-generation semiconductor manufacturing. At the 
same time, the computational overhead and convergence time 
of RL remain important factors to be addressed in real-time 
deployment, suggesting directions for lightweight or 
hardware-assisted implementations. It should be noted that 
average throughput and drop rate, although displaying inverse 
trends in the figures, represent complementary aspects of 
network performance rather than interchangeable measures. 
Throughput characterizes the effective data delivery capacity 

of the FSOC backbone, incorporating the impact of successful 
transmissions, latency, reconfiguration delays, and bandwidth 
utilization. By contrast, drop rate quantifies the fraction of 
burst traffic lost due to blocking or buffer overflow, serving as 
a direct indicator of link reliability. While an increase in drop 
rate inevitably reduces throughput, the two metrics emphasize 
different dimensions of performance. Evaluating them jointly 
provides a more comprehensive assessment, demonstrating 
that the proposed RL-based scheduling framework can 
simultaneously sustain high capacity and ensure robust 
reliability under dynamic semiconductor fab conditions. 

 

IV. CONCLUSION 
This study introduces a blocking-aware RL scheduling 

strategy for full-duplex multi-hop FSOC systems, enhancing 
throughput and reliability in highly dynamic semiconductor 
manufacturing settings. Unlike conventional scheduling 
schemes, the proposed framework explicitly models and 
mitigates blocking events caused by OHT movements, 
enabling more resilient and reliable link maintenance in highly 
dynamic fab conditions. Through discrete-event simulations, 
the framework is shown to significantly improve average 
throughput while simultaneously reducing drop rates 
compared to static and heuristic baselines. These results 
confirm the effectiveness of reinforcement learning in 
adapting to blocking events and traffic variability, thereby 
ensuring both high capacity and robust reliability in FSOC 
backbones. Future work will focus on reducing the training 
overhead and convergence time of RL algorithms, as well as 
developing lightweight and hardware-assisted 
implementations to ensure practical real-time deployment in 
next-generation fabs. 
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